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The cumulative degree distributions of transport networks, such as air transportation networks and respiratory
neuronal networks, follow power laws. The significance of power laws with respect to other network performance
measures, such as throughput and synchronization, remains an open question. Evolving methods for the analysis
and design of air transportation networks must be able to address network performance in the face of increasing
demands and the need to contain and control local network disturbances, such as congestion. Toward this end,
we investigate functional relationships that govern the performance of transport networks; for example, the links
between the first nontrivial eigenvalue, λ2, of a network’s Laplacian matrix—a quantitative measure of network
synchronizability—and other global network parameters. In particular, among networks with a fixed degree dis-
tribution and fixed network assortativity (a measure of a network’s preference to attach nodes based on a similarity
or difference), those with small λ2 are shown to be poor synchronizers, to have much longer shortest paths and to
have greater clustering in comparison to those with large λ2. A simulation of a respiratory network adds data to
our investigation. This study is a beginning step in developing metrics and design variables for the analysis and
active design of air transport networks. © 2008 Wiley Periodicals, Inc. Complexity 00: 000–000, 2008
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1. INTRODUCTION

T he US and world-wide air transport networks are scale-
free1, i.e., their degree distributions follow power laws
[2, 3]. A large body of recent work has been published

on scale-free networks including the popular books Linked

1We use the term “scale-free” here to denote networks whose
degree distributions follow a power law. Because of a wide
range of properties possessed by networks of similar degree
distributions, there is an ongoing discussion of the meaning
of “scale-free” [1].
Correspondence to: Rex K. Kincaid (e-mail: rrkinc@math.wm.
edu)

by Barabási [4] and Six Degrees by Watts [5]. A number of
excellent review articles, including Newman [6], Strogatz [7],
Albert and Barabási [8], and Dorogovtsev and Mendes [9],
contain hundreds of references.

Arguably, many scale-free networks occurring in natural
and technological realms have never been actively designed
in the traditional sense: identify design variables, objec-
tives, and constraints and follow a prescriptive algorithm
to obtain a design that satisfies constraints and is “opti-
mal” with respect to the given objectives. Rather, these
networks have evolved in response to demands, in accor-
dance with some natural or technological rules. Thus many
of the investigations have been of an analytical nature,
i.e., given a particular natural or technological network, its
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characteristics are studied. Our ultimate interest is to take
a step from analysis to active design and our motivation
comes from air transport systems. We emphasize that com-
plex networks will likely never be completely amenable to
traditional design methods, given the intrinsic lack of predic-
tive modeling akin to that of physical artifacts (e.g., airplanes,
automobiles). However, we conjecture that some measure
of active design is still possible with the identification of
appropriate design variables and metrics. Specifically, we
are looking for an appropriate functional relation between
global metrics (e.g., throughput, delays, capacity, synchroniz-
ability) and locally controllable structure (e.g., connectivity,
degree).

Air transport networks are our ultimate domain of inter-
est. Are scale-free networks desirable for air transport?
Given a fixed degree distribution, how should the net-
work links be configured to achieve optimal performance
for relevant metrics? Can salient features of scale-free air
transport networks critical to network performance be
identified?

With the advent of deregulation of the US air transport sys-
tem in 1978, airlines began to organize their operations with
a hub-and-spoke approach. Two natural outcomes have been
an increase in flight frequency and an increase in the variance
of flight times. Recently, competitors to the hub-and-spoke
model have garnered attention with the use of point-to-point
flight schedules. With the delays experienced by travelers at
hub airports these direct flights are an attractive alternative.
How will these point-to-point airlines alter the air transport
network structure? Can we provide any guidance to local air
routing decisions with global air transport network perfor-
mance measures in mind? To begin to address these ques-
tions, we examine the effects of a network metric for synchro-
nization on transport route structure by holding the degree
distribution and a scale-free/scale-rich metric constant. We
also report on a simulation of a respiratory neuronal network
used as an additional testbed for investigating the synchrony
metrics. It is a first step in the investigation aimed at deriv-
ing the functional dependences among various local network
properties and the aggregated metrics of interest to partici-
pants in the transportation system in an effort to eventually
arrive at active transport network design and optimization
algorithms.

2. BACKGROUND
In this section, we briefly review some of the network attri-
butes salient to our investigation into the network functional
relationships. Early network growth models were based on
preferential attachment. A variety of authors have developed
extensions and improvements to the early models. All of these
mechanisms build networks sequentially, one node at a time.
Barabasi’s [4] original approach selected the end nodes for the

edges associated with the new node based solely on the cur-
rent network’s degree distribution. Subsequent efforts have
altered the end-node selection method to control other net-
work features. For example, Wang et al. [10] developed a
growth model in which assortativity is tunable, while Schank
and Wagner [11] and Holme and Kim [12] grew networks with
tunable clustering coefficients.

The network attribute under study here is synchronicity.
One notion of synchronicity has to do with the network’s
tendency to synchronize over time, given a specific static
structure of the network. In particular, we are not yet consid-
ering explicit traffic flows through the air transport network.
Instead, we are investigating how the node (e.g., airport)
connectivity may influence the traffic flow.

Of importance here is the tunability of a given network
with respect to synchronicity. We realize tunability as net-
work optimization. Before proceeding further, we provide a
definition of network synchronization for a discrete complex
system. Given a connected network, denote the state of a
node i at time t by xi(t). How do the states of the nodes change
over time? Clearly if nodes do not rely on any information
generated by adjacent nodes then there is no opportunity of
synchronization. Atay et al. [13,14] assumed that all nodes are
identical and conform to the following generic discrete time
equation to determine their next state:

xi(t + 1) = f (xi(t)) + κ


 1

ki

∑
j|(i,j)∈Edges

f (xj(t)) − f (xi(t))


 ,

(1)

where κ , known as the coupling constant, is a scalar describ-
ing the extent to which neighbors effect the state of a node;
f (·) is any differentiable function mapping some finite inter-
val to itself. The function f (·) describes the behavior of a
node in the absence of any outside influence. We say that
a network synchronizes for a given initial condition if for
all i, j

lim
t→∞ |xi(t) − xj(t)| = 0. (2)

Note that if κ = 0, then the equation becomes xi(t + 1) =
f (xi(t)).

One attribute that correlates with the network’s capacity
to synchronize is the first nontrivial eigenvalue, λ2, of the
Laplacian matrix associated with the network structure (more
about λ2 in the next section). Here λ2 acts as a measure of the
range of κ over which the network will synchronize.

Clearly, air transport networks will not meet some of
the assumptions. The nodes (airports) are not all identi-
cal and we are more interested in the transient (say, 24-h
period) behavior than in what happens as t → ∞. Nonethe-
less, in the next section we will see that λ2 will provide
useful information with regard to network structure and
synchrony.
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For some complex systems, synchronization is an essen-
tial feature. For example, in mammals a small group of
neurons (roughly 200) is responsible for generating a reg-
ular rhythmic output to motor cells that initiate a breath.
(We explore this example further in Section 4.) Without syn-
chronization of the neuronal output, breathing would be
ragged or not occur at all. However, in the defined sense,
synchronization is an undesirable attribute for air transport
networks. Think of the airports as neurons in our mam-
malian respiratory example. Inhaling means all planes land
at all airports simultaneously. Exhaling means they depart
together. The result is congestion. Thus, for the given def-
inition, one would like an air transport network design to
minimize synchronization.

Another network metric, developed in [1], serves to clas-
sify the ways in which networks with a given degree distribu-
tion may be constructed. The metric is s(G), where G stands
for “graph” (networks and graphs are interchangeable). To
determine s(G), compute the product of the degrees of the
end nodes for each edge or link, sum them up for all edges,
and divide by smax , where smax is the maximum value of
the sum taken over all possible connected graphs for a fixed
degree distribution. That is,

s(G) =
∑

(i,j)∈Edges

(di × dj)/smax, (3)

where di is the degree of node i. The value of smax provides
a way to scale the sum of the product of the degrees for
each edge. In [1], for a fixed degree distribution, graph real-
izations with large values of s(G) are termed scale-free and
graph realizations with small values of s(G) are termed scale-
rich. Consequently, scale-free graphs or networks are those
in which high-degree nodes are more likely to be adjacent to
other high-degree nodes, whereas scale-rich graphs are those
for which high-degree nodes are more likely to be adjacent
to low-degree nodes. As shown in [1], s(G) and assortativity
are equivalent but are scaled in different ways. Typically, the
scaling for the assortativity measure leads to a tighter range
of values for a given degree distribution. For further infor-
mation about s(G) and how it is used to distinguish between
networks for the Internet at the router level, the interested
reader is referred to [1] and [15].

The problems faced by designers of air transport networks
share some aspects with the design of an Internet router
network. Many authors have contributed to investigations
of how a router network is constructed. Two references in
this field, [1] and [15], contain ideas central to our consid-
eration of the design of air transport networks. At one level
of resolution, Table 1 points out the analogies between these
two network design problems. With regard to bandwidth, the
Internet router designer must weigh the trade-offs between
many low bandwidth connections and fewer high bandwidth
connections. These trade-offs are akin to choosing between

TABLE I

Analogy Between Internet Router and Air Transport Networks

Internet Air Transport

Product Packets Planes (loaded)
Constraint Bandwidth Airport capacity
Competitors ISPs Airlines
Links Hardwired FAA/Airlines
Distributors Routers Airports

a few hub airports in a hub-and-spoke system and choos-
ing lower frequency airports that might arise in a direct route
system. Of course, there are many differences as well. The
variation in the size of the packets for the Internet is not nearly
as great as the number of passengers on planes of different
sizes. In addition, although the FAA2 clearly defines the routes
allowed between airports, the links are as not hard-wired as
they are in the Internet model. Still there is much to be learned
from the research efforts on the design of effective Internet
router networks.

3. NETWORK EXPERIMENTS WITH λ2

In this section, the interplay between λ2, a gross measure
of network synchrony, and s(G), a network measure sim-
ilar to assortativity is examined. Networks of two types—
preferential attachment and geometric—are the testbeds.
Each network has 100 nodes and is a simple undirected net-
work (no self-loops, no multiple edges). An adjacency matrix,
A, is constructed. G(V , E) denotes a graph (network) with
vertex (node) set V and edge (link) set E . For each net-
work type, the degree distribution and s(G) values are fixed.
Finally, a tabu search heuristic rewires a given network so as
to minimize (or maximize) the value of λ2.

Preferential attachment graphs are generated following
the approach given in [4]. The network is grown by adding
nodes and edges. For each node added, m edges are added
preferentially, based on the current degree distribution. Geo-
metric graphs are generated by randomly selecting 100 points
(r, θ) with values of r ∈ [0, 1] and values of θ ∈ (0, 360]. Edges
exist between pairs of points if the Euclidean distance is less
than a specified threshold (in our experiments thresholds
between 0.17 and 0.25 were used). If the resulting graph is
connected, it is kept; otherwise it is rejected and the process
begins again. A variety of network performance measures are
available. These include network diameter, average degree,
assortativity, clustering coefficient, synchrony, and s(G).

2Federal Aviation Administration.
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FIGURE 1

Geometric graph with λ2 = 0.238 and λ2 = 0.925.

Our measure of synchrony relies on computing an eigen-
value of the Laplacian matrix associated with a given network
structure. For our networks or graphs, the Laplacian matrix is
a symmetric matrix L = D − A, where D is a diagonal matrix
with the degree of each node located along the main diagonal.
A is the adjacency matrix for the graph. The second eigen-
value of L measures algebraic connectivity [16]. Intuitively,
graphs with small λ2 are easier to “pull apart”. In particu-
lar, if λ2 = 0, then the graph is disconnected. Many authors
[13, 17, 18] have convincingly used λ2 as a global measure of
how likely a graph is to synchronize. That is, given an arbitrary
flow of entities, the graph is less likely to synchronize if λ2 is
small. The two graphs in Figure 1 have identical degree distri-
butions, but the graph on the left is more weakly connected
(e.g., the removal a single edge can disconnect the graph). The
identification of structural differences between large graphs
with varying values of λ2 is studied in the following set of
numerical experiments.

In the remainder of the section, we describe numerical
experiments in optimizing two types of networks for λ2: geo-
metric graphs with 100 nodes and preferential attachment
graphs with m = 2.

The graphs plotted in Figures 2 and 3 were constructed
by first generating a random instance of the particular
graph class—geometric in Figure 2 or preferential attach-
ment in Figure 3. Next, a simple tabu search [19] heuris-
tic was called to minimize or maximize λ2 while keeping
the degree distribution and s(G) fixed. Allowable moves
(re-wirings) are pair-wise edge interchanges that preserve
the degree distribution and s(G). Briefly, the tabu search
checks to see if the move is acceptable, that is, if the
move is improving and not tabu, or improving and tabu
but leads to the best observed value of λ2 (aspiration cri-
terion). Note that these moves are precisely the moves
allowed in a random rewiring scheme without checking for
the preservation of s(G). The interested reader is referred
to Glover and Laguna [19] for further information on tabu
search.

Figures 2–4 display networks with respect to the reciprocal
of the eccentricity of each node u. The eccentricity of u is its
maximum (shortest path) distance. The graphs are generated

by socnetv3. The goal of the plots is to uncover any qual-
itative differences between the graphs with small and large
values of the second eigenvalue of the Laplacian.4 For each
pair of plots in a figure, the number of nodes (100), the degree
distribution, and the value of s(G) is fixed.

Nodes with equal eccentricity values are plotted on the
same (dashed line) circles. The circles with larger radii have
larger eccentricity. Consequently, nodes near the center have
shorter longest paths. The paired plots exhibit large qualita-
tive differences in the eccentricity patterns. The same pairs of
plots for other available measures in socnetvwere also con-
structed. Although small variations were seen, none of the
other paired plots exhibited significant differences.

Qualitatively, when λ2 is small, the patterns are less orga-
nized, the eccentricity plots in Figures 2(a) and 3(a) are more
dispersed and consist of many rings of constant eccentricity.
The eccentricity plots with larger λ2 are more organized, with
few rings of constant eccentricity. Specifically, the plots with
small λ2 have 11 [Figure 2(a)] and 10 [Figure 3(a)] rings. For
larger λ2, there are five [Figure 2(b)] and four [Figure 3(b)]
rings, respectively. The ranges of eccentricity values for the
small λ2 plots are dominated by the ranges for the large λ2

plots. For example, the range of eccentricity values for the
geometric graph with small λ2 [Figure 2(a)] is [26, 42] and for
the geometric graph with large λ2 [Figure 2(b)] it is [4, 8]. Thus,
the patterns of eccentricities in Figures 2(b) and 3(b) are non-
overlapping and dominate those given in Figures 2(a) and
3(a).

The diameter of the graph in Figure 2(a) is 42, whereas
the graph diameter in Figure 2(b) is 8. The diameters are 19
and 6 for graphs in Figure 3. Notice that this is also true for
the simple graphs in Figure 1. The graph on the left has a
larger diameter than the one on the right. For graphs with a
fixed degree distribution and a fixed value of s(G), this result
appears to hold in general.We know of no theorem that proves
this result but numerous computational tests support this
claim so far. Moreover, the inverse relationship between λ2

and the eccentricity does not hold if s(G) is allowed to vary.
Figure 4(a, b) provide an example. The value of λ2 = 0.935
in Figure 4(a) is larger than λ2 = 0.440 in Figure 4(b). Yet the
range of eccentricity values for Figure 4(a), [8, 16], is larger
and does not overlap with the range for Figure 4(b) of [3, 6].

In Figures 5 and 6, we investigate the relation between s(G)

and the clustering coefficient, c(G) [6], of a network or graph.
These figures display results for 5000 geometric graphs. In
Figure 5, the 5000 geometric graphs are generated randomly.

3The source code and documentation can be found at
http://socnetv.sourceforge.net/.
4We leave it to the reader to become acquainted the variety
of measures and display features in socnetv. For the pur-
poses of this exposition,we are interested only in the qualitative
differences between the plots.
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FIGURE 2

Geometric graphs: 100 nodes, s(G) = 0.971, fixed degree distribution. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

Edges connect nodes if the Euclidean distance between these
nodes is less than 0.23. If the resulting graph is connected, it
is kept; otherwise it is rejected and the process begins again.
Figure 5(b) displays the values of s(G) versus c(G). There is
no apparent correlation. Figure 6(a) records the values of
s(G) when a given 100-node geometric graph is randomly
rewired 5000 times. Figure 6(b) illustrates the inverse rela-
tionship between s(G) and c(G) when the first 364 re-wirings
are excluded.

In addition to the inverse relationship between λ2 and the
eccentricity, the clustering coefficient varies inversely with λ2

in Figures 2 and 3. Notice that when s(G) is not held con-
stant, as in Figure 4, this relationship does not hold. A similar
trend between s(G) and c(G) is observed in Figure 6. Figure
6(a) displays the value of s(G) versus 5000 random re-wirings
of a given geometric graph. We note that the same moves as
those used in our tabu search to optimize λ2 are used for the
random re-wirings. Figure 6(b) plots s(G) versus c(G) for the

FIGURE 3

Preferential attachment: 100 nodes, s(G) = 0.716, fixed degree distribution. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

© 2008 Wiley Periodicals, Inc.
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FIGURE 4

Geometric graphs: 100 nodes, fixed degree distribution, varying s(G). [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

last 4634 random re-wirings and s(G) varies inversely with
c(G). Notice that in Figure 6(a), the first 600 or so random re-
wirings decrease s(G) almost monotonically before settling
into an oscillating pattern of increases and decreases in the
range of (0.79, 0.83). This is not the case, however, when geo-
metric graphs are generated at random (no rewiring), as in
Figure 5. Here no correlation is exhibited between c(G) and
s(G).

As we have noted earlier, Figure 4(a,b) illustrates that s(G),
or some yet unknown network metric, appears to exert sig-
nificant influence on the eccentricity pattern. In Figure 2(b),
λ2 = 0.314, s(G) = 0.971, and the eccentricity range is [4, 8].

This compares favorably with the results in Figure 4(b), where
λ2 = 0.440 is larger and the eccentricity range of [3, 6] is
smaller with a smaller minimum node eccentricity. How-
ever, the comparisons with Figure 4(a) are not consistent.
The value for λ2 in Figure 4(a) is larger but, unexpectedly, the
max and min values for the eccentricity range are much larger
than those in Figure 2(b). In addition, the previously observed
pattern of c(G) varying inversely with λ2 no longer holds. For
example, λ2 decreases from 0.935 in Figure 4(a) to 0.440 in
Figure 4(b). Similar decreases observed in Figures 2 and 3
led to a doubling of c(G). But here c(G) decreases by more
than a half. It is unclear if the role of s(G) explains the lack of

FIGURE 5

5000 random geometric graphs. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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FIGURE 6

5000 re-wirings of geometric graphs. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

consistency. Figure 5 provides one possible explanation. Here
geometric graphs are generated at random (no rewiring) and
there is no correlation between s(G) and c(G). In Figure 6, an
inverse correlation exists but here the graphs are constructed
by successively rewiring a single geometric graph at random.

4. RESPIRATORY NETWORK SIMULATION
In the previous section, we have seen that when the degree
distribution and s(G) are fixed, there is a predictable differ-
ence in the shortest path distribution (eccentricity measures)

and the clustering coefficients. Ideally, the next step would
be to simulate the performance of networks presented in
the previous section and investigate their performance as air
transport network systems. We are currently proceeding in
this direction using a model previously developed to simu-
late the complete US air transport system. For now, we pro-
vide simulation results for a different system—a respiratory
neural network—for which a simpler simulation model was
readily available. In this model, synchronization (rhythmic
breathing) is desired.

FIGURE 7

Raster plots of neuron output for two networks with disparate λ2 values. A point at (x , y ) indicates neuron x is spiking at time y . The higher λ2 network
displays much stronger synchronization among all nodes as predicted, as well as a quicker breath frequency. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

© 2008 Wiley Periodicals, Inc.
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FIGURE 8

Indistinguishable raster plots of simulated neuron output for two sample networks with differing λ2 values. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

Although simple synchronization is undesirable for air
transport networks, there are systems for which it is an essen-
tial feature. In mammals, a small group of neurons is respon-
sible for generating a regular rhythmic output to motor cells
that initiate a breath. The network structure of these neurons
allows them to synchronize without any external influence
and produce regular bursts that lead to breaths. In [20], two
geometric networks, one with a value of λ2 = 0.025 and a
second with a value of λ2 = 0.974 were tested in a simulation
model [21] of this neuronal network. The rhythmic output
from the the network with λ2 = 0.025 was ragged with fuzzy
bursts, whereas outputs from the network with λ2 = 0.974
was sharp with clear, regular bursts (Figure 7).

In mammals, a small group of neurons in the brain
stem, called the pre-Bötzinger complex, is responsible for
generating a regular rhythmic output to motor cells that ini-
tiate a breath. Disconnected, these neurons are unable to
provide sufficient output to activate the motor neurons, but
their interconnected network structure allows them to syn-
chronize without any external influence and produce regular
bursts. Using a detailed simulation by Hayes [21], we were
able to experiment with how different network topologies
control the effectiveness of the pre-Bötzinger complex. We
began by testing two geometric graphs with extreme values
of λ2. The results of the two simulations, depicted in Figure 7,
provide compelling evidence for the utility of λ2 as a predic-
tor of synchronization. It is easy to see that the network with
higher λ2 synchronizes more strongly than the other network.
The second set of simulations investigated two preferential
attachment networks. The raster plots in Figure 8 are nearly
indistinguishable. The results of the simulation are further

analyzed via an autocorrelation analysis (Figure 8). Analysis
(as in [21]) uncovers better synchronization in the network
with the higher value of λ2. The results in Figure 9 confirm
that, although the difference is undetectable at a first glance
(Figure 8), higher λ2 results in a better synchronization.
Autocorrelation indicates the largest difference during the
refractory (non-spiking) period: the two graphs exhibit sim-
ilar behaviors during spikes, but not between spikes. These
experiments provide further evidence that λ2 can be used to
identify graphs (networks) that are not likely to synchronize.

FIGURE 9

An autocorrelation plot of pre-Bötzinger complex synchronization on
two networks with the same degree distribution, but with differing λ2

values. The autocorrelation analysis shows that the higher λ2 network
displays better synchronization. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

8 C O M P L E X I T Y © 2008 Wiley Periodicals, Inc.
DOI 10.1002/cplx



5. CONCLUSIONS AND DISCUSSION
Given the present state of air transportation networks, there
is some urgency in developing active and rigorous design
methodologies. Our goal is to develop a systematic way to
design for some salient aspects of air transport networks. In
particular, network structure, both static (node location) and
dynamic (air route scheduling) has a direct effect on the func-
tioning of the traffic in the network; we are now concerned
with the effect of the static and dynamic network structure
on the performance.

How should the design process proceed? Design involves
being able to manipulate variables so as to optimize objec-
tives subject to constraints. As a step in this direction, we have
demonstrated that for a fixed degree distribution and fixed
s(G) value (and, consequently, a fixed assortativity), optimiz-
ing for λ2 yields networks with distinct eccentricity patterns.
We have demonstrated the ability to construct networks with
locally optimal λ2 and observed a correlation with global net-
work attributes, such as clustering, eccentricity, and synchro-
nizability. These results are further supported by a simulation
analysis of another transport system—a respiratory neuronal
network. This simulation supports our conjecture that large
differences in λ2 result in observable differences in the burst
activity: good synchronization for large λ2 and poor synchro-
nization for small λ2. It remains to simulate air transport
networks with small and large values of λ2 (more than likely
with identical degree distributions and s(G) values). In addi-
tion to validating the static results for networks (as in Figures
2 and 3), the simulation will also measure quantities of inter-
est to the FAA that are currently not amenable to rigorous
optimization. For example, the simulation will measure con-
gestion effects in air traffic sectors. Finally, one of our major

tasks is to derive maps between the network metrics we can
control and airspace simulations and, ultimately, FAA met-
rics. We conjecture that deriving the maps will enable active
design for a number of objectives and constraints.

A few words about practical matters are in order. We real-
ize that the traditional research in transportation tends to be
of a more immediately applied nature. The line of inquiry
we are pursuing is very much in its infancy and we cannot
even refer (to the best of our knowledge) to similar pub-
lications in transportation research. Our only references to
similar network investigations are thus far in the realm of the
Internet [1, 15]. However, we firmly believe that the ongoing
difficulties in implementing profound changes in the present
air transportation system (due, in general, to its immense
complexity) can be, in particular, traced to the lack of pre-
dictive modeling. To arrive at predictive modeling—or to
understand the limitations of possible modeling—we must
start with an investigation into functional relationships that,
at first, appear theoretical and somewhat removed from the
practicalities of the system. Fortunately, there is a growing
recognition of the need for such fundamental inquiries into
the nature of complex networks. For instance, a recent NASA
Research Announcement explicitly targeted basic research
into modeling and active design of transport networks [22].
Thus, we hope that, should an initial emphasis on theory
lead to a better understanding of network behavior and to
quantitative analysis and design algorithms, we would meet
a receptive audience in the transportation community.
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