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Abstract. The cumulative degree distributions of transport networks, such as air

transportation networks and respiratory neuronal networks, follow power laws.

The significance of power laws with respect to other network performance mea-

sures, such as throughput and synchronization, remains an open question. Evolv-

ing methods for the analysis and design of air transportation networks must be

able to address network performance in the face of increasing demands and the

need to contain and control local network disturbances, such as congestion. To-

ward this end, we investigate functional relationships that govern the performance

of transport networks; for example, the links between the first nontrivial eigen-

value,λ2, of a network’s Laplacian matrix—a quantitative measure ofnetwork

synchronizability—and other global network parameters. In particular, among

networks with a fixed degree distribution and fixed network assortativity (a mea-

sure of a network’s preference to attach nodes based on a similarity or difference),

those with smallλ2 are shown to be poor synchronizers, to have much longer

shortest paths and to have greater clustering in comparisonto those with largeλ2.

A simulation of a respiratory network adds data to our investigation. This study is

a beginning step in developing metrics and design variablesfor the analysis and

active design of air transport networks.

Keywords. networks, power laws, degree distribution, synchronization
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1 Introduction

The U.S. and world-wide air transport networks arescale-free1, i.e., their degree

distributions follow power laws[2; 3]. A large body of recent work has been

published on scale-free networks including the popular booksLinked by Barabási

[4] andSix Degrees by Watts [5]. A number of excellent review articles, including

Newman [6], Strogatz [7], Albert and Barabási [8] and Dorogovtsev and Mendes

[9], contain hundreds of references.

Arguably, many scale-free networks occurring in natural and technological

realms have never been actively designed in the traditionalsense: identify design

variables, objectives, and constraints and follow a prescriptive algorithm to obtain

a design that satisfies constraints and is “optimal” with respect to the given objec-

tives. Rather, these networks have evolved in response to demands, in accordance

with some natural or technological rules. Thus many of the investigations have

been of an analytical nature, i.e., given a particular natural or technological net-

work, its characteristics are studied. Our ultimate interest is to take a step from

analysis to active design and our motivation comes from air transport systems.

We emphasize that complex networks will likely never be completely amenable

to traditional design methods, given the intrinsic lack of predictive modeling akin

to that of physical artifacts (e.g., airplanes, automobiles). However, we conjec-

ture that some measure of active design is still possible with the identification

1We use the term “scale-free” here to denote networks whose degree distributions follow a
power law. Due to a wide range of properties possessed by networks of similar degree distribu-
tions, there is an ongoing discussion of the meaning of “scale-free” [1].
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of appropriate design variables and metrics. Specifically,we are looking for an

appropriate functional relation between global metrics (e.g., throughput, delays,

capacity, synchronizability) and locally controllable structure (e.g., connectivity,

degree).

Air transport networks are our ultimate domain of interest.Are scale-free net-

works desirable for air transport? Given a fixed degree distribution, how should

the network links be configured to achieve optimal performance for relevant met-

rics? Can salient features of scale-free air transport networks critical to network

performance be identified?

With the advent of deregulation of the U.S. air transport system in 1978, air-

lines began to organize their operations with ahub-and-spoke approach. Two

natural outcomes have been an increase in flight frequency and an increase in the

variance of flight times. Recently, competitors to the hub-and-spoke model have

garnered attention with the use ofpoint-to-point flight schedules. With the de-

lays experienced by travelers at hub airports these direct flights are an attractive

alternative. How will these point-to-point airlines alterthe air transport network

structure? Can we provide any guidance to local air routing decisions with global

air transport network performance measures in mind? To begin to address these

questions we examine the effects of a network metric for synchronization on trans-

port route structure by holding the degree distribution anda scale-free/scale-rich

metric constant. We also report on a simulation of a respiratory neuronal network

used as an additional testbed for investigating the synchrony metrics. It is a first

step in the investigation aimed at deriving the functional dependences among var-
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ious local network properties and the aggregated metrics ofinterest to participants

in the transportation system in an effort to eventually arrive at active transport

network design and optimization algorithms.

2 Background

In this section we briefly review some of the network attributes salient to our inves-

tigation into the network functional relationships. Earlynetwork growth models

were based on preferential attachment. A variety of authorshave developed ex-

tensions and improvements to the early models. All of these mechanisms build

networks sequentially, one node at a time. Barabasi’s [4] original approach se-

lected the end nodes for the edges associated with the new node based solely on

the current network’s degree distribution. Subsequent efforts have altered the end

node selection method to control other network features. For example, Wanget

al. [10] develop a growth model in whichassortativity is tunable while Schank

and Wagner [11] and Holme and Kim [12] grow networks with tunable clustering

coefficients.

The network attribute under study here is synchronicity. One notion of syn-

chronicity has to do with the network’s tendency to synchronize over time, given

a specific static structure of the network. In particular, weare not yet considering

explicit traffic flows through the air transport network. Instead, we are investigat-

ing how the node (e.g., airport) connectivity may influence the traffic flow.

Of importance here is thetunability of a given network with respect to syn-
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chronicity. We realize tunability as network optimization. Before proceeding

further we provide a definition of network synchronization for a discrete complex

system. Given a connected network, denote the state of a nodei at timet by xi(t).

How do the states of the nodes change over time? Clearly if nodes do not rely on

any information generated by adjacent nodes then there is noopportunity of syn-

chronization. Atayet al. [13; 14] assume that all nodes are identical and conform

to the following generic discrete time equation to determine their next state:

xi(t +1) = f (xi(t))+κ

[

1
ki

∑
j|(i, j)∈Edges

f (x j(t))− f (xi(t))

]

, (1)

whereκ, known as thecoupling constant, is a scalar describing the extent to which

neighbors effect the state of a node;f (·) is any differentiable function mapping

some finite interval to itself. The functionf (·) describes the behavior of a node

in the absence of any outside influence. We say that a networksynchronizes for a

given initial condition if for alli, j

lim
t→∞

|xi(t)− x j(t)|= 0. (2)

Note that ifκ = 0, then the equation becomesxi(t +1) = f (xi(t)).

One attribute that correlates with the network’s capacity to synchronize is the

first nontrivial eigenvalue,λ2, of the Laplacian matrix associated with the network

structure (more aboutλ2 in the next section). Hereλ2 acts as a measure of the

range ofκ over which the network will synchronize.

Clearly, air transport networks will not meet some of the assumptions. The
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nodes (airports) are not all identical and we are more interested in the transient

(say, 24 hour period) behavior than in what happens ast → ∞. Nonetheless, in

the next section we will see thatλ2 will provide useful information with regard to

network structure and synchrony.

For some complex systems synchronization is an essential feature. For exam-

ple, in mammals a small group of neurons (roughly 200) is responsible for gener-

ating a regular rhythmic output to motor cells that initiatea breath. (We explore

this example further in Section IV.) Without synchronization of the neuronal out-

put, breathing would be ragged or not occur at all. However, in the defined sense,

synchronization is an undesirable attribute for air transport networks. Think of

the airports as neurons in our mammalian respiratory example. Inhaling means all

planes land at all airports simultaneously. Exhaling meansthey depart together.

The result is congestion. Thus, for the given definition, onewould like an air

transport network design to minimize synchronization.

Another network metric, developed in [1], serves to classify the ways in which

networks with a given degree distribution may be constructed. The metric iss(G),

whereG stands for “graph” (networks and graphs are interchangeable). To de-

termines(G), compute the product of the degrees of the end nodes for each edge

or link, sum them up for all edges, and divide bysmax, wheresmax is the maxi-

mum value of the sum taken over all possible connected graphsfor a fixed degree

distribution. That is,
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s(G) = ∑
(i, j)∈Edges

(di ×d j)/smax, (3)

wheredi is the degree of nodei. The value ofsmax provides a way to scale the sum

of the product of the degrees for each edge. In [1], for a fixed degree distribution,

graph realizations with large values ofs(G) are termedscale-free and graph real-

izations with small values ofs(G) are termedscale-rich. Consequently, scale-free

graphs or networks are those in which high degree nodes are more likely to be

adjacent to other high degree nodes while scale-rich graphsare those for which

high degree nodes are more likely to be adjacent to low degreenodes. As shown

in [1], s(G) and assortativity are equivalent but are scaled in different ways. Typi-

cally the scaling for the assortativity measure leads to a tighter range of values for

a given degree distribution. For further information abouts(G) and how it is used

to distinguish between networks for the Internet at the router level the interested

reader is referred to [1] and [15].

Internet Air Transport
product packets planes (loaded)

constraint bandwidth airport capacity
competitors ISPs airlines

links hardwired FAA/Airlines
distributors routers airports

Table 1: Analogy between Internet router and air transport networks.

The problems faced by designers of air transport networks share some aspects

with the design of an Internet router network. Many authors have contributed
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to investigations of how a router network is constructed. Two references in this

field, [1] and [15], contain ideas central to our consideration of the design of air

transport networks. At one level of resolution, Table 1 points out the analogies

between these two network design problems. With regard to bandwidth, the In-

ternet router designer must weigh the trade-offs between many low bandwidth

connections and fewer high bandwidth connections. These trade-offs are akin to

choosing between a few hub airports in a hub-and-spoke system and choosing

lower frequency airports that might arise in a direct route system. Of course, there

are many differences as well. The variation in the size of thepackets for the In-

ternet is not nearly as great as the number of passengers on planes of different

sizes. In addition, although the FAA2 clearly defines the routes allowed between

airports, the links are as not hard-wired as they are in the Internet model. Still

there is much to be learned from the research efforts on the design of effective

Internet router networks.

3 Network Experiments with λ2

In this section the interplay betweenλ2, a gross measure of network synchrony,

ands(G), a network measure similar to assortativity is examined. Networks of

two types—preferential attachment and geometric—are the testbeds. Each net-

work has 100 nodes and is a simple undirected network (no self-loops, no mul-

tiple edges). An adjacency matrix, A, is constructed.G(V,E) denotes a graph

2Federal Aviation Administration
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Figure 1: Geometric graph withλ2 = 0.238 andλ2 = 0.925

(network) with vertex (node) setV and edge (link) setE. For each network type

the degree distribution ands(G) values are fixed. Finally, a tabu search heuristic

rewires a given network so as to minimize (or maximize) the value of λ2.

Preferential attachment graphs are generated following the approach given in

[4]. The network is grown by adding nodes and edges. For each node added,m

edges are added preferentially, based on the current degreedistribution. Geomet-

ric graphs are generated by randomly selecting 100 points(r,θ) with values of

r ∈ [0,1] and values ofθ ∈ (0,360]. Edges exist between pairs of points if the Eu-

clidean distance is less than a specified threshold (in our experiments thresholds

between 0.17 and 0.25 were used). If the resulting graph is connected, it is kept;

otherwise it is rejected and the process begins again. A variety of network perfor-

mance measures are available. These include network diameter, average degree,

assortativity, clustering coefficient, synchrony ands(G).

Our measure of synchrony relies on computing an eigenvalue of the Laplacian

matrix associated with a given network structure. For our networks or graphs the

Laplacian matrix is a symmetric matrixL = D−A, whereD is a diagonal matrix

with the degree of each node located along the main diagonal.A is the adjacency
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matrix for the graph. The second eigenvalue ofL measures algebraic connectivity

[16]. Intuitively, graphs with smallλ2 are easier to “pull apart”. In particular,

if λ2 = 0, then the graph is disconnected. Many authors [13; 17; 18] have con-

vincingly usedλ2 as a global measure of how likely a graph is to synchronize.

That is, given an arbitrary flow of entities, the graph is lesslikely to synchronize

if λ2 is small. The two graphs in Figure 1 have identical degree distributions, but

the graph on the left is more weakly connected (e.g., the removal a single edge

can disconnect the graph). The identification of structuraldifferences between

large graphs with varying values ofλ2 is studied in the following set of numerical

experiments.

In the remainder of the section, we describe numerical experiments in op-

timizing two types of networks forλ2: geometric graphs with 100 nodes and

preferential attachment graphs withm = 2.

The graphs plotted in Figures 2 and 3 were constructed by firstgenerating a

random instance of the particular graph class—geometric inFigure 2 or preferen-

tial attachment in Figure 3. Next, a simple tabu search [19] heuristic was called

to minimize or maximizeλ2 while keeping the degree distribution ands(G) fixed.

Allowable moves (re-wirings) are pair-wise edge interchanges that preserve the

degree distribution ands(G). Briefly, the tabu search checks to see if the move

is acceptable, that is, if the move is improving and not tabu,or improving and

tabu but leads to the best observed value ofλ2 (aspiration criterion). Note that

these moves are precisely the moves allowed in a random rewiring scheme with-

out checking for the preservation ofs(G). The interested reader is referred to
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Glover and Laguna [19] for further information on tabu search.

Figures 2-4 display networks with respect to the reciprocalof the eccentricity

of each nodeu. The eccentricity ofu is its maximum (shortest path) distance.

The graphs are generated bysocnetv3. The goal of the plots is to uncover

any qualitative differences between the graphs with small and large values of the

second eigenvalue of the Laplacian.4 For each pair of plots in a figure, the number

of nodes (100), the degree distribution, and the value ofs(G) is fixed.

Nodes with equal eccentricity values are plotted on the same(dashed line) cir-

cles. The circles with larger radii have larger eccentricity. Consequently, nodes

near the center have shorter longest paths. The paired plotsexhibit large qual-

itative differences in the eccentricity patterns. The samepairs of plots for other

available measures insocnetvwere also constructed. Although small variations

were seen, none of the other paired plots exhibited significant differences.

Qualitatively, whenλ2 is small, the patterns are less organized, the eccentricity

plots in Figures 2a and 3a are more dispersed and consist of many rings of constant

eccentricity. The eccentricity plots with largerλ2 are more organized, with few

rings of constant eccentricity. Specifically, the plots with smallλ2 have 11 (Figure

2a) and 10 (Figure 3a) rings. For largerλ2 there are five (Figure 2b) and four

(Figure 3b) rings, respectively. The ranges of eccentricity values for the smallλ2

plots are dominated by the ranges for the largeλ2 plots. For example, the range

3The source code and documentation can be found athttp://socnetv.sourceforge
.net/.

4We leave it to the reader to become acquainted the variety of measures and display features in
socnetv. For the purposes of this exposition, we are interested onlyin the qualitative differences
between the plots.
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of eccentricity values for the geometric graph with smallλ2 (Figure 2a) is[26,42]

and for the geometric graph with largeλ2 (Figure 2b) it is[4,8]. Thus, the patterns

of eccentricities in Figures 2b-3b are non-overlapping anddominate those given

in Figures 2a-3a.

The diameter of the graph in Figure 2a is 42 while the graph diameter in Figure

2b is 8. The diameters are 19 and 6 for graphs in Figure 3. Notice that this is also

true for the simple graphs in Figure 1. The graph on the left has a larger diameter

than the one on the right. For graphs with a fixed degree distribution and a fixed

value of s(G), this result appears to hold in general. We know of no theorem

that proves this result but numerous computational tests support this claim so far.

Moreover, the inverse relationship betweenλ2 and the eccentricity does not hold

if s(G) is allowed to vary. Figures 4a and 4b provide an example. The value of

λ2 = 0.935 in Figure 4a is larger thanλ2 = 0.440 in Figure 4b. Yet the range of

eccentricity values for Figure 4a,[8,16], is larger and does not overlap with the

range for Figure 4b of[3,6].

In Figures 5 and 6, we investigate the relation betweens(G) and the clustering

coefficient,c(G) [6], of a network or graph. These figures display results for 5000

geometric graphs. In Figure 5, the 5000 geometric graphs aregenerated randomly.

Edges connect nodes if the Euclidean distance between thesenodes is less than

0.23. If the resulting graph is connected, it is kept; otherwise it is rejected and the

process begins again. Figure 5b displays the values ofs(G) versusc(G). There

is no apparent correlation. Figure 6a records the values ofs(G) when a given

100-node geometric graph is randomly rewired 5000 times. Figure 6b illustrates
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(a) λ2 = 0.009, e(V ) = (26,42), c(G) =
0.426

(b) λ2 = 0.314, e(V ) = (4,8), c(G) =
0.297

Figure 2: Geometric graphs: 100 nodes,s(G) = 0.971, fixed degree distribution

the inverse relationship betweens(G) andc(G) when the first 364 re-wirings are

excluded.

In addition to the inverse relationship betweenλ2 and the eccentricity, the

clustering coefficient varies inversely withλ2 in Figures 2 and 3. Notice that when

s(G) is not held constant, as in Figure 4, this relationship does not hold. A similar

trend betweens(G) andc(G) is observed in Figure 6. Figure 6a displays the value

of s(G) versus 5000 random re-wirings of a given geometric graph. Wenote that

the same moves as those used in our tabu search to optimizeλ2 are used for the

random re-wirings. Figure 6b plotss(G) versusc(G) for the last 4634 random

re-wirings ands(G) varies inversely withc(G). Notice that in Figure 6a, the first

600 or so random re-wirings decreases(G) almost monotonically before settling

into an oscillating pattern of increases and decreases in the range of(0.79,0.83).

This is not the case, however, when geometric graphs are generated at random (no

rewiring), as in Figure 5. Here no correlation is exhibited betweenc(G) ands(G).
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(a) λ2 = 0.006, e(V ) = (10,19), c(G) =
0.210

(b) λ2 = 0.365, e(V ) = (3,6), c(G) =
0.101

Figure 3: Preferential attachment: 100 nodes,s(G) = 0.716, fixed degree distri-
bution

(a) λ2 = 0.935, s(G) = 0.797, e(V ) =
(8,16), c(G) = 0.306

(b) λ2 = 0.440, s(G) = 0.677, e(V ) =
(3,6), c(G) = 0.126

Figure 4: Geometric graphs: 100 nodes, fixed degree distribution, varyings(G)
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As we have noted earlier, Figures 4a-b illustrate thats(G), or some yet un-

known network metric, appears to exert significant influenceon the eccentricity

pattern. In Figure 2b,λ2 = 0.314, s(G) = 0.971, and the eccentricity range is

[4,8]. This compares favorably with the results in Figure 4b, where λ2 = 0.440 is

larger and the eccentricity range of[3,6] is smaller with a smaller minimum node

eccentricity. However, the comparisons with Figure 4a are not consistent. The

value forλ2 in Figure 4a is larger but, unexpectedly, the max and min values for

the eccentricity range are much larger than those in Figure 2b. In addition, the

previously observed pattern ofc(G) varying inversely withλ2 no longer holds.

For example,λ2 decreases from 0.935 in Figure 4a to 0.440 in Figure 4b. Sim-

ilar decreases observed in Figures 2 and 3 led to a doubling ofc(G). But here

c(G) decreases by more than a half. It is unclear if the role ofs(G) explains the

lack of consistency. Figure 5 provides one possible explanation. Here geometric

graphs are generated at random (no rewiring) and there is no correlation between

s(G) andc(G). In Figure 6, an inverse correlation exists but here the graphs are

constructed by successively rewiring a single geometric graph at random.

4 Respiratory Network Simulation

In the previous section we have seen that when the degree distribution ands(G)

are fixed, there is a predictable difference in the shortest path distribution (eccen-

tricity measures) and the clustering coefficients. Ideallythe next step would be

to simulate the performance of networks presented in the previous section and
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investigate their performance as air transport network systems. We are currently

proceeding in this direction using a model previously developed to simulate the

complete U.S. air transport system. For now, we provide simulation results for a

different system—a respiratory neural network—for which asimpler simulation

model was readily available. In this model, synchronization (rhythmic breathing)

is desired.

Although synchronization is undesirable for air transportnetworks, there are

systems for which it is an essential feature. In mammals, a small group of neurons

is responsible for generating a regular rhythmic output to motor cells that initiate

a breath. The network structure of these neurons allows themto synchronize

without any external influence and produce regular bursts that lead to breaths. In

[20], two geometric networks, one with a value ofλ2 = 0.025 and a second with

a value ofλ2 = 0.974 were tested in a simulation model [21] of this neuronal

network. The rhythmic output from the the network withλ2 = 0.025 was ragged

with fuzzy bursts, while outputs from the network withλ2 = 0.974 was sharp with

clear, regular bursts (Figure 7).

In mammals, a small group of neurons in the brain stem, calledthe pre-

Bötzinger complex, is responsible for generating a regular rhythmic output to mo-

tor cells that initiate a breath. Disconnected, these neurons are unable to provide

sufficient output to activate the motor neurons, but their interconnected network

structure allows them to synchronize without any external influence and produce

regular bursts. Using a detailed simulation due by Hayes [21], we were able to

experiment with how different network topologies control the effectiveness of the
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pre-Bötzinger complex. We began by testing two geometric graphs with extreme

values ofλ2. The results of the two simulations, depicted in Figure 7, provide

compelling evidence for the utility ofλ2 as a predictor of synchronization. It

is easy to see that the network with higherλ2 synchronizes more strongly than

the other network. The second set of simulations investigated two preferential

attachment networks. The raster plots in Figure 8 are nearlyindistinguishable.

The results of the simulation are further analyzed via an autocorrelation analysis

(Figure 8). Analysis (as in [21]) uncovers better synchronization in the network

with the higher value ofλ2. The results in Figure 9 confirm that, although the

difference is undetectable at a first glance (Figure 8), higher λ2 results in a bet-

ter synchronization. Autocorrelation indicates the largest difference during the

refractory (non-spiking) period: the two graphs exhibit similar behaviors during

spikes, but not between spikes. These experiments provide further evidence that

λ2 can be used to identify graphs (networks) that are not likelyto synchronize.

5 Conclusions and Discussion

Given the present state of air transportation networks, there is some urgency in

developing active and rigorous design methodologies. Our goal is to develop a

systematic way to design for some salient aspects of air transport networks. In

particular, network structure, both static (node location) and dynamic (air route

scheduling) has a direct effect on the functioning of the traffic in the network; we

are now concerned with the effect of the static and dynamic network structure on
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the performance.

How should the design process proceed? Design involves being able to ma-

nipulate variables so as to optimize objectives subject to constraints. As a step in

this direction we have demonstrated that for a fixed degree distribution and fixed

s(G) value (and, consequently, a fixed assortativity), optimizing for λ2 yields net-

works with distinct eccentricity patterns. We have demonstrated the ability to

construct networks with locally optimalλ2 and observed a correlation with global

network attributes, such as clustering, eccentricity and synchronizability. These

results are further supported by a simulation analysis of another transport system

– a respiratory neuronal network. This simulation supportsour conjecture that

large differences inλ2 result in observable differences in the burst activity: good

synchronization for largeλ2 and poor synchronization for smallλ2. It remains

to simulate air transport networks with small and large values ofλ2 (more than
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likely with identical degree distributions ands(G) values). In addition to validat-

ing the static results for networks (as in Figures 2 and 3) thesimulation will also

measure quantities of interest to the FAA that are currentlynot amenable to rig-

orous optimization. For example, the simulation will measure congestion effects

in air traffic sectors. Finally, one of our major tasks is to derive maps between

the network metrics we can control and airspace simulationsand, ultimately, FAA

metrics. We conjecture that deriving the maps will enable active design for a

number of objectives and constraints.

A few words about practical matters are in order. We realize that the tradi-

tional research in transportation tends to be of a more immediately applied nature.

The line of inquiry we are pursuing is very much in its infancyand we cannot

even refer (to the best of our knowledge) to similar publications in transportation

research. Our only references to similar network investigations are thus far in the

realm of the Internet [1; 15]. However, we firmly believe thatthe ongoing diffi-

culties in implementing profound changes in the present airtransportation system

(due, in general, to its immense complexity) can be, in particular, traced to the

lack of predictive modeling. To arrive at predictive modeling–or to understand the

limitations of possible modeling--we must start with an investigation into func-

tional relationships that, at first, appear theoretical andsomewhat removed from

the practicalities of the system. Fortunately, there is a growing recognition of the

need for such fundamental inquiries into the nature of complex networks. For in-

stance, a recent NASA Research Announcement explicitly targeted basic research

into modeling and active design of transport networks [22].Thus, we hope that,
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should an initial emphasis on theory lead to a better understanding of network

behavior and to quantitative analysis and design algorithms, we would meet a

receptive audience in the transportation community.
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