
Chapter 1

Synchronizability and

Connectivity of

Discrete Complex Systems

Michael Holroyd

College of William and Mary

Williamsburg, Virginia

The synchronization of discrete complex systems is critical in applications such as
communication and transportation networks, neuron respiratory systems, and other
systems in which either congestion can occur at individual nodes, or system wide syn-
chrony is of importance to proper functionality. The first non-trivial eigenvalue of a
network’s Laplacian matrix, called the algebraic connectivity, provides a quantifiable
measure of synchronizability in a network. We study the general relationship between
network topology, clustering coefficient distributions, and synchronizability, as well as
the effects of degree preserving rewiring on network synchronizability. In addition,
we compare the synchronizability of different network topologies, including Poisson
random graphs, geometric networks, preferential attachment networks, and scale-rich
networks. We also explore uses of the algebraic connectivity in the design and man-
agement of complex networks where synchronization is desired (respiration networks),
or detrimental to network performance (router networks).

1.1 Background

In the study of discrete complex systems, it is often important to understand the
likelihood of synchronization on a given network. For example, synchronization
in air transportation networks results in delays and congestion at airports.

Consider the network of nodes (airports, routers, neurons) and edges connect-
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ing them (flights, ethernet, axons) that models such a complex system. Denote
the state of node i at time t by xi(t). How do the states of all nodes change
over time? Clearly if nodes do not take any note of their neighbors there is no
chance for synchronization.

As in [1], we assume that all nodes are identical and conform to the following
generic discrete time equation to determine their next state:

xi(t + 1) = f(xi(t)) + κ





1

ki

∑

j|i↔j

f(xj(t)) − f(xi(t))



 (1.1)

where i ↔ j denotes an edge between i and j [1]. κ is called the coupling

strength and is a scalar describing the extent to which neighbors effect the state
of a node. f(x) is any differentiable function that describes the behavior of a
node in the absence of outside influence: notice that if κ = 0, the equation is
simply xi(t + 1) = f(xi(t)).

An initial condition (x1(0), · · · , xn(0)) synchronizes if for all i, j

lim
t→∞

|xi(t) − xj(t)| = 0 (1.2)

and we say that the entire network synchronizes if x1 = · · · = xn is an
attracting set.

The Laplacian matrix of a network is constructed by setting ai,j = −1 if
i ↔ j and 0 otherwise for all i 6= j, and each ai,i = deg(i). This matrix is
positive semi-definite, and all the associated eigenvalue are non-negative real
numbers. It has been shown that the second smallest eigenvalue, λ2, or the
algebraic connectivity plays a decisive role in determining the synchronizability
of a given network in the above sense [1][2][7][8]. A small example is given in
figure 1.1.

Figure 1.1: These two networks have the same degree sequence, however notice that
the network on the left seems weakly connected. Intuitively we expect the network
on the right to be more synchronizable. On the left, λ2 = 0.238, and on the right
λ2 = 0.925.
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1.2 λ2 of Erdös-Rényi random graphs

In the Erdös-Rényi, or Gn,p, construction first defined by Paul Erdös and Alfréd
Rényi in [5], we take n nodes and between each pair of nodes create an edge
with probability p. This type of network is often referred to as a Poisson ran-
dom graph, since for large n the degree distribution tends toward a Poisson
distribution [4].

Separate constructions were run for n = {100, 200, 300} and for p =
{ 2

n
, 2.5

n
, · · · , 5

n
}. The results are shown in figure 1.2 (top).

As one expects, adding more edges to the network (by increasing p) improves
synchronizability. As the average degree of the network increases, λ2 increases
exponentially. By reducing the number of tightly coupled clusters in the network
and creating a larger loosely connected network, the ability of the network to
synchronize is drastically reduced.

1.3 λ2 of geometric random graphs

Random geometric graphs are created by placing nodes at random coordinated
inside a fixed shape, and connecting any nodes within a threshold distance r.
Our construction created geometric graphs by randomly assigning (r, θ) polar
coordinates to each node inside the unit circle. Separate constructions were run
for n = {100, 200, 300} and for r = {0.25, 0.27, 0.29, 0.31, 0.33}. The results are
shown in figure 1.2 (center).

Increasing n forces more nodes into the same confined space, so it is not
surprising that despite using the same values for r, the networks with 300 nodes
have significantly higher average degree than those with fewer nodes. We expect
a network of 100 nodes to have the same average degree as a network of 200
nodes when the connection area is double (or equivalently, that the radius is

√
2

longer). As a result, for a given average degree, increasing n forces r to decrease.
Since more nodes must be traversed to move across the network, the ability of
a network to synchronize is poor. Compared to the Erdös-Rényi graphs, the
geometric graph synchronizability is worse for a given average degree. This
shows a fundamental difficulty for complex system synchronization where edge
construction is based on distance, and demonstrates that a network created by
linking closest neighbors will be highly resistant to synchronization.

1.4 λ2 of preferential attachment graphs

In Barabasi’s preferential attachment model, nodes are added one at a time
with a fixed number of incoming connections k. Then, for each incoming stub,
a random end of an edge is chosen from the existing network, and the node at
this end is linked to the new node [3]. In other words, a node with degree 6
is twice as likely to receive one of the new connections as a node of degree 3.
We choose to use a slight variation on this basic model, in which the number
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Figure 1.2: Plots depicting the relationship between average degree and λ2 for ran-
domly generated Erdös-Rényi graphs (top), geometric graphs (center), and preferential
attachment graphs (bottom). N is the number of nodes in the network.



Synchronizability and Connectivity of Discrete Complex Systems 5

of incoming connections for a new node is uniformly random from 1 to k. This
results in a wider variety of networks with different average degrees centered
around k + 1. Separate constructions were run for k = {2, 3, 4, 5, 6} and for
n = {100, 200, 300}. The results are shown in figure 1.2 (bottom).

We see an unexpected phenomena in the data, resulting in some clustering
of datapoints along the y axis, especially just beneath λ2 = 0.4. By observing
specific networks on opposite sides of this divide, it became clear that this strange
behavior was due to the “winner takes all” scenario, in which an early node in the
network construction gains an unusually large degree very quickly. New nodes
prefer to connect with high degree nodes, so a single node of very high degree
causes most new nodes to connect with it. A network which relies on a single
highly connected hub is less synchronizable than a network centered around a
core of several nodes.

1.5 Neuron rhythmogensis

In mammals, a small group of neurons in the brainstem called the pre-Bötzinger
complex is responsible for generating a regular rhythmic output to motor cells
that initiate a breath. Disconnected, these neurons are unable to provide enough
output to activate the motor neurons, but their interconnected network structure
allows them to synchronize without any external influence and produce regular
bursts. An example of a typical neuron’s output is in figure 1.3.
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Figure 1.3: Example output from an individual neuron in the PreBötzinger complex.
This function corresponds to f(x) in equation 1.1.

Using a detailed simulation written by John Hayes at the College of William
and Mary [10], we were able to experiment with how different network topologies
control the effectiveness of the pre-Bötzinger complex. Starting from a geometric
graph, we used random degree preserving rewiring to sample from all graphs with
the same degree distribution, then kept the largest and smallest λ2 networks
found to run the simulation on. The results of the two simulations can be seen
in figure 1.4, and provide compelling evidence. We also ran the same experiment
starting from a preferential attachment network; however, the results were not as
obvious. We used autocorrelation analysis as in [9] to statistically detect better
synchronization in the higher λ2 preferential attachment network. The results
are shown in figure 1.5, and confirm that although the difference is undetectable
at a glance, the higher λ2 value statistically shows better synchronization. The



6 Synchronizability and Connectivity of Discrete Complex Systems

difference in autocorrelation is largest during the refractory (non-spiking) period,
indicating that the two networks have similar behavior during the spikes, but
not between spikes. For more details, see the original paper at [6].
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Figure 1.4: Raster plot of neuron output for two sample networks with extreme λ2

values. A point at (x, y) indicates neuron x is spiking at time y. The higher λ2 network
displays much stronger synchronization amongst all nodes as predicted, as well as a
quicker breath frequency.
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Figure 1.5: An autocorrelation plot of pre-Bötzinger complex synchronization on two
networks with the same power-law degree-distribution, but distant λ2 values. Although
the raster plots seem indistinguishable (top two figures), an autocorrelation analysis
(bottom) shows that the higher λ2 network displays statistically better synchronization.


