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Abstract. The cumulative degree distributions of transport netwoskeh as air
transportation networks and respiratory neuronal netgjolitdlow power laws.
The significance of power laws with respect to other netwa@aigmance mea-
sures, such as throughput and synchronization, remainpemauestion. Evolv-
ing methods for the analysis and design of air transporiatietworks must be
able to address network performance in the face of incrgas#mands and the
need to contain and control local network disturbanced) sisccongestion. To-
ward this end, we investigate functional relationships$ ¢fuwern the performance
of transport networks; for example, the links between thst fiontrivial eigen-
value, A,, of a network’s Laplacian matrix—a quantitative measuraetivork
synchronizability—and other global network parametens.particular, among
networks with a fixed degree distribution and fixed netwoloastivity (a mea-
sure of a network’s preference to attach nodes based on lasiynor difference),
those with small, are shown to be poor synchronizers, to have much longer
shortest paths and to have greater clustering in compastiose with large,.

A simulation of a respiratory network adds data to our ingagion. This study is
a beginning step in developing metrics and design varidblethe analysis and
active design of air transport networks.
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1 Introduction

The U.S. and world-wide air transport networks scale-free!, i.e., their degree
distributions follow power laws[2; 3]. A large body of re¢emwork has been
published on scale-free networks including the populakbainked by Barabasi
[4] andSx Degrees by Watts [5]. A number of excellent review articles, inclodi
Newman [6], Strogatz [7], Albert and Barabasi [8] and Daraigev and Mendes
[9], contain hundreds of references.

Arguably, many scale-free networks occurring in naturad gchnological
realms have never been actively designed in the traditeerade: identify design
variables, objectives, and constraints and follow a prpsee algorithm to obtain
a design that satisfies constraints and is “optimal” witlpees to the given objec-
tives. Rather, these networks have evolved in responsenarigs, in accordance
with some natural or technological rules. Thus many of tvestigations have
been of an analytical nature, i.e., given a particular rator technological net-
work, its characteristics are studied. Our ultimate irgeig to take a step from
analysis to active design and our motivation comes fromramgport systems.
We emphasize that complex networks will likely never be ctatgly amenable
to traditional design methods, given the intrinsic lack @dgictive modeling akin
to that of physical artifacts (e.g., airplanes, automa)ileHowever, we conjec-

ture that some measure of active design is still possibla tié identification

IWe use the term “scale-free” here to denote networks whogeedeaistributions follow a
power law. Due to a wide range of properties possessed byonetvwf similar degree distribu-
tions, there is an ongoing discussion of the meaning of &strale” [1].



of appropriate design variables and metrics. Specificalgyare looking for an
appropriate functional relation between global metricg.(e¢hroughput, delays,
capacity, synchronizability) and locally controllableustture (e.g., connectivity,
degree).

Air transport networks are our ultimate domain of interége scale-free net-
works desirable for air transport? Given a fixed degreeidigion, how should
the network links be configured to achieve optimal perforoeafior relevant met-
rics? Can salient features of scale-free air transport arés\critical to network
performance be identified?

With the advent of deregulation of the U.S. air transporteysin 1978, air-
lines began to organize their operations witlmub-and-spoke approach. Two
natural outcomes have been an increase in flight frequerctcammcrease in the
variance of flight times. Recently, competitors to the hand-apoke model have
garnered attention with the use pdint-to-point flight schedules. With the de-
lays experienced by travelers at hub airports these dingtit$l are an attractive
alternative. How will these point-to-point airlines alt&e air transport network
structure? Can we provide any guidance to local air routa@sions with global
air transport network performance measures in mind? Tonktegaddress these
guestions we examine the effects of a network metric forlsgorazation on trans-
port route structure by holding the degree distribution arstale-free/scale-rich
metric constant. We also report on a simulation of a resmiyateuronal network
used as an additional testbed for investigating the symghmeetrics. It is a first

step in the investigation aimed at deriving the functioreggehdences among var-



ious local network properties and the aggregated metricge@rfest to participants
in the transportation system in an effort to eventuallyvarat active transport

network design and optimization algorithms.

2 Background

In this section we briefly review some of the network attréssalient to our inves-
tigation into the network functional relationships. Eanlgtwork growth models
were based on preferential attachment. A variety of authave developed ex-
tensions and improvements to the early models. All of theseh@anisms build
networks sequentially, one node at a time. Barabasi’s [4]iral approach se-
lected the end nodes for the edges associated with the nesvibaseéd solely on
the current network’s degree distribution. Subsequentisfhave altered the end
node selection method to control other network features.ekample, Wanggt
al. [10] develop a growth model in whichssortativity is tunable while Schank
and Wagner [11] and Holme and Kim [12] grow networks with toleaclustering
coefficients.

The network attribute under study here is synchronicitye @ation of syn-
chronicity has to do with the network’s tendency to syncimerover time, given
a specific static structure of the network. In particular,ase not yet considering
explicit traffic flows through the air transport network. tead, we are investigat-
ing how the node (e.g., airport) connectivity may influereetraffic flow.

Of importance here is theinability of a given network with respect to syn-



chronicity. We realize tunability as network optimizatiomefore proceeding
further we provide a definition of network synchronization & discrete complex
system. Given a connected network, denote the state of ai rbdienet by x;(t).
How do the states of the nodes change over time? Clearly Bsdd not rely on
any information generated by adjacent nodes then thereagpportunity of syn-
chronization. Atayet al. [13; 14] assume that all nodes are identical and conform

to the following generic discrete time equation to detemnrthmeir next state:

KO+ = )4k | Y O - @) @
jl(i,j)€Edges
wherek, known as theoupling constant, is a scalar describing the extent to which
neighbors effect the state of a nodd;) is any differentiable function mapping
some finite interval to itself. The functiofy-) describes the behavior of a node
in the absence of any outside influence. We say that a netsynckronizes for a
given initial condition if for alli, |

lim [x(t) — ) (t)] =O. 2)
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Note that ifk = 0, then the equation becomest + 1) = f(x;(t)).

One attribute that correlates with the network’s capaatgynchronize is the
first nontrivial eigenvalue),, of the Laplacian matrix associated with the network
structure (more about, in the next section). Herk, acts as a measure of the
range ofk over which the network will synchronize.

Clearly, air transport networks will not meet some of theuagstions. The



nodes (airports) are not all identical and we are more istecein the transient
(say, 24 hour period) behavior than in what happens-aso. Nonetheless, in
the next section we will see thas will provide useful information with regard to
network structure and synchrony.

For some complex systems synchronization is an esserdialréee For exam-
ple, in mammals a small group of neurons (roughly 200) isaesible for gener-
ating a regular rhythmic output to motor cells that initiatbreath. (We explore
this example further in Section 1V.) Without synchronipatiof the neuronal out-
put, breathing would be ragged or not occur at all. Howewathé defined sense,
synchronization is an undesirable attribute for air tramspetworks. Think of
the airports as neurons in our mammalian respiratory exanhmihaling means all
planes land at all airports simultaneously. Exhaling meheg depart together.
The result is congestion. Thus, for the given definition, amaild like an air
transport network design to minimize synchronization.

Another network metric, developed in [1], serves to clasié ways in which
networks with a given degree distribution may be constdiciée metric iss(G),
whereG stands for “graph” (networks and graphs are interchang¢aflo de-
termines(G), compute the product of the degrees of the end nodes for eleh e
or link, sum them up for all edges, and divide &y, wheresyax is the maxi-
mum value of the sum taken over all possible connected gifaplasfixed degree

distribution. That is,



S(G) = Z (di x dj)/S‘nax, (3)
(i,j)eEdges

whered; is the degree of node The value obyux provides a way to scale the sum
of the product of the degrees for each edge. In [1], for a fbegieke distribution,
graph realizations with large valuess§f5) are termedscale-free and graph real-
izations with small values cf( G) are termedscale-rich. Consequently, scale-free
graphs or networks are those in which high degree nodes are likely to be
adjacent to other high degree nodes while scale-rich grapghghose for which
high degree nodes are more likely to be adjacent to low degrdes. As shown
in [1], s(G) and assortativity are equivalent but are scaled in diffenays. Typi-
cally the scaling for the assortativity measure leads tglatdir range of values for
a given degree distribution. For further information abs{@) and how it is used
to distinguish between networks for the Internet at theeolavel the interested

reader is referred to [1] and [15].

Internet | Air Transport
product packets | planes (loaded
constraint | bandwidth| airport capacity
competitors ISPs airlines
links hardwired| FAA/Airlines
distributors | routers airports

Table 1: Analogy between Internet router and air transpetwvarks.

The problems faced by designers of air transport networksessome aspects

with the design of an Internet router network. Many authasgehcontributed



to investigations of how a router network is constructed.o Teferences in this
field, [1] and [15], contain ideas central to our considemraif the design of air
transport networks. At one level of resolution, Table 1 p®iout the analogies
between these two network design problems. With regard nduwlth, the In-
ternet router designer must weigh the trade-offs betweemynav bandwidth
connections and fewer high bandwidth connections. Thesktoffs are akin to
choosing between a few hub airports in a hub-and-spokemyatel choosing
lower frequency airports that might arise in a direct roystam. Of course, there
are many differences as well. The variation in the size ofpidiekets for the In-
ternet is not nearly as great as the number of passengersaoespdf different
sizes. In addition, although the FA&learly defines the routes allowed between
airports, the links are as not hard-wired as they are in tkernet model. Still
there is much to be learned from the research efforts on thigmef effective

Internet router networks.

3 Network Experimentswith A

In this section the interplay betwe@n, a gross measure of network synchrony,
ands(G), a network measure similar to assortativity is examinedtwdeks of
two types—preferential attachment and geometric—aredhkthéds. Each net-
work has 100 nodes and is a simple undirected network (ndagts, no mul-

tiple edges). An adjacency matrix, A, is construct&V,E) denotes a graph

2Federal Aviation Administration



A LA

Figure 1. Geometric graph witkp = 0.238 and\, = 0.925

(network) with vertex (node) s&t and edge (link) sefe. For each network type
the degree distribution argfG) values are fixed. Finally, a tabu search heuristic
rewires a given network so as to minimize (or maximize) theeafA,.

Preferential attachment graphs are generated followiaggproach given in
[4]. The network is grown by adding nodes and edges. For eadk addedm
edges are added preferentially, based on the current dégtebution. Geomet-
ric graphs are generated by randomly selecting 100 poin@g with values of
r € [0,1] and values 06 € (0,360. Edges exist between pairs of points if the Eu-
clidean distance is less than a specified threshold (in queréxents thresholds
between QL7 and 025 were used). If the resulting graph is connected, it is;kept
otherwise it is rejected and the process begins again. &tyasi network perfor-
mance measures are available. These include network digragerage degree,
assortativity, clustering coefficient, synchrony a(@).

Our measure of synchrony relies on computing an eigenvdlired.aplacian
matrix associated with a given network structure. For otwneks or graphs the
Laplacian matrix is a symmetric matrix= D — A, whereD is a diagonal matrix

with the degree of each node located along the main diagénalthe adjacency
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matrix for the graph. The second eigenvalué ofieasures algebraic connectivity
[16]. Intuitively, graphs with small, are easier to “pull apart”. In particular,

if A2 =0, then the graph is disconnected. Many authors [13; 17; a8 lton-
vincingly usedA2 as a global measure of how likely a graph is to synchronize.
That is, given an arbitrary flow of entities, the graph is ldssly to synchronize

if A2 is small. The two graphs in Figure 1 have identical degretibligions, but
the graph on the left is more weakly connected (e.g., the vahesingle edge
can disconnect the graph). The identification of structditiérences between
large graphs with varying values % is studied in the following set of numerical
experiments.

In the remainder of the section, we describe numerical exgerts in op-
timizing two types of networks foh,: geometric graphs with 100 nodes and
preferential attachment graphs with= 2.

The graphs plotted in Figures 2 and 3 were constructed byginsérating a
random instance of the particular graph class—geometfaguare 2 or preferen-
tial attachment in Figure 3. Next, a simple tabu search [Eiristic was called
to minimize or maximizé\, while keeping the degree distribution as(@) fixed.
Allowable moves (re-wirings) are pair-wise edge intergf@sthat preserve the
degree distribution and G). Briefly, the tabu search checks to see if the move
is acceptable, that is, if the move is improving and not talsumproving and
tabu but leads to the best observed valua pfaspiration criterion). Note that
these moves are precisely the moves allowed in a randomimgveicheme with-

out checking for the preservation fG). The interested reader is referred to

11



Glover and Laguna [19] for further information on tabu séarc

Figures 2-4 display networks with respect to the reciprot#he eccentricity
of each nodas. The eccentricity ol is its maximum (shortest path) distance.
The graphs are generated bpcnet v3. The goal of the plots is to uncover
any qualitative differences between the graphs with shrmalllarge values of the
second eigenvalue of the Laplactafor each pair of plots in a figure, the number
of nodes (100), the degree distribution, and the valug@f is fixed.

Nodes with equal eccentricity values are plotted on the qdamhed line) cir-
cles. The circles with larger radii have larger eccenyicttonsequently, nodes
near the center have shorter longest paths. The paired ethibit large qual-
itative differences in the eccentricity patterns. The sgaies of plots for other
available measures spcnet v were also constructed. Although small variations
were seen, none of the other paired plots exhibited signifiddferences.

Qualitatively, when\, is small, the patterns are less organized, the eccentricity
plotsin Figures 2a and 3a are more dispersed and consistyfings of constant
eccentricity. The eccentricity plots with larges are more organized, with few
rings of constant eccentricity. Specifically, the plotshvgtmallA, have 11 (Figure
2a) and 10 (Figure 3a) rings. For larger there are five (Figure 2b) and four
(Figure 3Db) rings, respectively. The ranges of eccenyri@iues for the smali,

plots are dominated by the ranges for the lakgelots. For example, the range

3The source code and documentation can be fourd aip: / / socnet v. sour cef or ge
. het/.

“We leave it to the reader to become acquainted the varietyeabores and display features in
sochet v. For the purposes of this exposition, we are interestediarthe qualitative differences
between the plots.
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of eccentricity values for the geometric graph with smal(Figure 2a) i§26,42]
and for the geometric graph with large (Figure 2b) it is[4, 8]. Thus, the patterns
of eccentricities in Figures 2b-3b are non-overlapping dochinate those given
in Figures 2a-3a.

The diameter of the graph in Figure 2ais 42 while the grapimdtar in Figure
2b is 8. The diameters are 19 and 6 for graphs in Figure 3. dithit this is also
true for the simple graphs in Figure 1. The graph on the leftehkarger diameter
than the one on the right. For graphs with a fixed degree ldigtan and a fixed
value ofs(G), this result appears to hold in general. We know of no theorem
that proves this result but numerous computational tegig@tithis claim so far.
Moreover, the inverse relationship betweenand the eccentricity does not hold
if s(G) is allowed to vary. Figures 4a and 4b provide an example. Hhaevof
A2 = 0.935 in Figure 4a is larger thaxp = 0.440 in Figure 4b. Yet the range of
eccentricity values for Figure 4¢8,16], is larger and does not overlap with the
range for Figure 4b off3, 6].

In Figures 5 and 6, we investigate the relation betws¢&) and the clustering
coefficient,c(G) [6], of a network or graph. These figures display results G0
geometric graphs. In Figure 5, the 5000 geometric graphgearerated randomly.
Edges connect nodes if the Euclidean distance between ioglss is less than
0.23. If the resulting graph is connected, it is kept; otheeniss rejected and the
process begins again. Figure 5b displays the values®f versusc(G). There
is no apparent correlation. Figure 6a records the valueg@®f when a given

100-node geometric graph is randomly rewired 5000 timeguréi 6b illustrates
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Figure 2: Geometric graphs: 100 nodg$;) = 0.971, fixed degree distribution

the inverse relationship betwes(G) andc(G) when the first 364 re-wirings are
excluded.

In addition to the inverse relationship betwegnand the eccentricity, the
clustering coefficient varies inversely wikh in Figures 2 and 3. Notice that when
S(G) is not held constant, as in Figure 4, this relationship de¢$ald. A similar
trend betwees(G) andc(G) is observed in Figure 6. Figure 6a displays the value
of s(G) versus 5000 random re-wirings of a given geometric graphnute that
the same moves as those used in our tabu search to opfimae used for the
random re-wirings. Figure 6b plo&G) versusc(G) for the last 4634 random
re-wirings ands(G) varies inversely witle(G). Notice that in Figure 6a, the first
600 or so random re-wirings decrea%6&) almost monotonically before settling
into an oscillating pattern of increases and decrease®iratige 0f0.79,0.83).
This is not the case, however, when geometric graphs areagedeat random (no

rewiring), as in Figure 5. Here no correlation is exhibitetvieenc(G) ands(G).
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(a) A2 = 0.006, &(V) = (10,19), ¢(G) = (b) Az = 0.365, e(V) = (3,6), ¢(G) =
0.210 0.101

Figure 3: Preferential attachment: 100 nod#&) = 0.716, fixed degree distri-
bution

[I——— e FUT——

(a) A2 = 0.935, S(G) = 0.797, (V) = (b) A2 = 0.440, S(G) = 0.677, e(V) =
(8,16), ¢(G) = 0.306 (3,6), ¢(G) = 0.126

Figure 4: Geometric graphs: 100 nodes, fixed degree disivilwaryings(G)
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As we have noted earlier, Figures 4a-b illustrate 8{&), or some yet un-
known network metric, appears to exert significant influeoicehe eccentricity
pattern. In Figure 2bA, = 0.314, 5(G) = 0.971, and the eccentricity range is
[4,8]. This compares favorably with the results in Figure 4b, \efAer= 0.440 is
larger and the eccentricity range[8f 6] is smaller with a smaller minimum node
eccentricity. However, the comparisons with Figure 4a areconsistent. The
value forA; in Figure 4a is larger but, unexpectedly, the max and minesfor
the eccentricity range are much larger than those in Fighrel2 addition, the
previously observed pattern ofG) varying inversely withA, no longer holds.
For example), decreases from.935 in Figure 4a to @40 in Figure 4b. Sim-
ilar decreases observed in Figures 2 and 3 led to a doublieg@®f But here
c(G) decreases by more than a half. It is unclear if the rolg(Gf) explains the
lack of consistency. Figure 5 provides one possible expi@maHere geometric
graphs are generated at random (no rewiring) and there ismelation between
S(G) andc(G). In Figure 6, an inverse correlation exists but here thelape

constructed by successively rewiring a single geometaplgiat random.

4 Respiratory Network Simulation

In the previous section we have seen that when the degre#digin ands(G)
are fixed, there is a predictable difference in the shortait gistribution (eccen-
tricity measures) and the clustering coefficients. Idetdly next step would be

to simulate the performance of networks presented in theique section and
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investigate their performance as air transport networkesys. We are currently
proceeding in this direction using a model previously depetl to simulate the
complete U.S. air transport system. For now, we provide kitimn results for a
different system—a respiratory neural network—for whickimpler simulation
model was readily available. In this model, synchronizafihythmic breathing)
is desired.

Although synchronization is undesirable for air transpmtworks, there are
systems for which it is an essential feature. In mammals,al group of neurons
is responsible for generating a regular rhythmic output tdancells that initiate
a breath. The network structure of these neurons allows tieesynchronize
without any external influence and produce regular burstsléad to breaths. In
[20], two geometric networks, one with a value)gf= 0.025 and a second with
a value ofA, = 0.974 were tested in a simulation model [21] of this neuronal
network. The rhythmic output from the the network wikth= 0.025 was ragged
with fuzzy bursts, while outputs from the network with= 0.974 was sharp with
clear, regular bursts (Figure 7).

In mammals, a small group of neurons in the brain stem, caledpre-
Botzinger complex, is responsible for generating a ragiigthmic output to mo-
tor cells that initiate a breath. Disconnected, these meuaoe unable to provide
sufficient output to activate the motor neurons, but theenctonnected network
structure allows them to synchronize without any externfilience and produce
regular bursts. Using a detailed simulation due by Haye§ [2& were able to

experiment with how different network topologies contiw effectiveness of the
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pre-Botzinger complex. We began by testing two geometaplys with extreme
values ofA,. The results of the two simulations, depicted in Figure tyvte
compelling evidence for the utility ok, as a predictor of synchronization. It
is easy to see that the network with higldersynchronizes more strongly than
the other network. The second set of simulations investtdyavo preferential
attachment networks. The raster plots in Figure 8 are neadigtinguishable.
The results of the simulation are further analyzed via anaartelation analysis
(Figure 8). Analysis (as in [21]) uncovers better synchzation in the network
with the higher value oh,. The results in Figure 9 confirm that, although the
difference is undetectable at a first glance (Figure 8), dn@h results in a bet-
ter synchronization. Autocorrelation indicates the Iatgdifference during the
refractory (non-spiking) period: the two graphs exhibmgar behaviors during
spikes, but not between spikes. These experiments prowrtieef evidence that

A2 can be used to identify graphs (networks) that are not lik@ynchronize.

5 Conclusonsand Discussion

Given the present state of air transportation networksgetiesome urgency in
developing active and rigorous design methodologies. @at 3 to develop a
systematic way to design for some salient aspects of aispi@h networks. In
particular, network structure, both static (node locgtiand dynamic (air route
scheduling) has a direct effect on the functioning of th#itran the network; we

are now concerned with the effect of the static and dynantwaerd structure on
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Figure 7: Raster plots of neuron output for two networks wigparate\, values.
A point at(x,y) indicates neurox is spiking at timey. The higherA, network
displays much stronger synchronization among all nodeseigted, as well as
a quicker breath frequency.
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Figure 8: Indistinguishable raster plots of simulated nawutput for two sample
networks with differing\» values.
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Figure 9: An autocorrelation plot of pre-Botzinger comp#ynchronization on
two networks with the same degree distribution, but witledihg A values. The
autocorrelation analysis shows that the highenetwork displays better synchro-
nization.

the performance.

How should the design process proceed? Design involveg ladile to ma-
nipulate variables so as to optimize objectives subjecbtstraints. As a step in
this direction we have demonstrated that for a fixed degr&eitolition and fixed
S(G) value (and, consequently, a fixed assortativity), optingZor A, yields net-
works with distinct eccentricity patterns. We have dem@tst the ability to
construct networks with locally optimab and observed a correlation with global
network attributes, such as clustering, eccentricity amtisronizability. These
results are further supported by a simulation analysis ofter transport system
— a respiratory neuronal network. This simulation suppotisconjecture that
large differences iz result in observable differences in the burst activity: gjoo
synchronization for largd, and poor synchronization for smalp. It remains

to simulate air transport networks with small and large ealofA, (more than
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likely with identical degree distributions arsdG) values). In addition to validat-
ing the static results for networks (as in Figures 2 and 3sthmulation will also
measure quantities of interest to the FAA that are curramityamenable to rig-
orous optimization. For example, the simulation will maastongestion effects
in air traffic sectors. Finally, one of our major tasks is taieke maps between
the network metrics we can control and airspace simulaaods ultimately, FAA
metrics. We conjecture that deriving the maps will enablevaalesign for a
number of objectives and constraints.

A few words about practical matters are in order. We realieg the tradi-
tional research in transportation tends to be of a more inabegt applied nature.
The line of inquiry we are pursuing is very much in its infarenyd we cannot
even refer (to the best of our knowledge) to similar pubiarad in transportation
research. Our only references to similar network invetitiga are thus far in the
realm of the Internet [1; 15]. However, we firmly believe tiia¢ ongoing diffi-
culties in implementing profound changes in the presertamnsportation system
(due, in general, to its immense complexity) can be, in paldr, traced to the
lack of predictive modeling. To arrive at predictive modegh-or to understand the
limitations of possible modeling--we must start with anastigation into func-
tional relationships that, at first, appear theoretical smahewhat removed from
the practicalities of the system. Fortunately, there iscavgrg recognition of the
need for such fundamental inquiries into the nature of cempktworks. For in-
stance, a recent NASA Research Announcement explicidgetad basic research

into modeling and active design of transport networks [Z22jus, we hope that,
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should an initial emphasis on theory lead to a better unaiedstg of network
behavior and to quantitative analysis and design algosthwe would meet a
receptive audience in the transportation community.

Acknowledgment. The authors kindly thank the anonymous referee for sugges-
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