
Synchronizability and Connectivity

of
Discrete Complex Systems

Michael Holroyd

November 16, 2006

Accepted for:

Department of Mathematics

The College of William and Mary

Williamsburg, VA

Contents

1 Background 1

1.1 Graph Theory . 1
1.1.1 Properties of graphs . 2
1.1.2 Types of graphs . 4
1.1.3 Scale-free vs. Scale-rich . 6

1.2 Linear Algebra . 6
1.2.1 Transpose and Hermitian adjoint 6
1.2.2 Eigenvalues . 8
1.2.3 Hermitian matrices . 8
1.2.4 Positive definite matrices . 9

1.3 Algebraic methods in graph theory 9
1.3.1 Laplacian matrix . 9
1.3.2 Algebraic connectivity . 10

1.4 Synchronizability . 10
1.4.1 Measure of synchronizability 11

2 Relating Network Topology to Synchronizability 13

2.1 Sampling from a family of graphs . 13
2.1.1 Static graph generation . 14

2.2 Models of network growth . 15
2.2.1 Small-world model . 15
2.2.2 Preferential attachment . 16
2.2.3 Geometric graph . 16

3 Results 18

3.1 Erdös-Rényi graph data . 18
3.2 Geometric graph data . 19
3.3 Preferential attachment graph data 21
3.4 Graphs with fixed degree distributions 23

4 Conclusions 26

4.1 Communication and information networks 26
4.2 Airline networks . 27
4.3 Neuron rhythmogensis . 27
4.4 Open problems . 28

i

4.4.1 More practical measure . 28
4.4.2 Algorithm for largest and smallest λ2 graphs 28
4.4.3 Synchronizability under targeted attacks 28

A Example λ2 Calculation 31

B Edge-effects 33

C Code 36

C.1 clustercoeff.cc . 36
C.2 geometric.cc . 38
C.3 geoshuffle.cc . 41
C.4 poisson.cc . 46
C.5 prefattach.cc . 48
C.6 Makefile . 50

ii

Abstract

The synchronization of discrete complex systems is critical in applications such as
communication and transportation networks, neuron respiratory systems, and other
systems in which either congestion can occur at individual nodes, or system wide
synchrony is of importance to proper functionality. The first non-trivial eigenvalue
of a network’s Laplacian matrix, called the algebraic connectivity, provides a quan-
tifiable measure of synchronizability in a network. We study the general relationship
between network topology, clustering coefficient distributions, and synchronizability,
as well as the effects of degree preserving rewiring on network synchronizability. In
addition, we compare the synchronizability of different network topologies, including
Poisson random graphs, geometric networks, preferential attachment networks, and
scale-rich networks. We also explore uses of the algebraic connectivity in the design
and management of complex networks where synchronization is desired (respiration
networks), or detrimental to network performance (router networks).

Acknowledgements

Special thanks to:
John Hayes, for excellent help with his simulation and helpful insight into auto-

correlation analysis.
Rex Kincaid, my advisor and mentor for the project.
Christopher Del Negro, member of the commitee, for the opportunity to work

with him and John on their research.
Sebastian Schreiber, member of the commitee.

Chapter 1

Background

Discrete complex system is a general term describing any system with many distinct
elements coupled in a non-linear fashion. For example, in most descriptions of the
Internet’s topology each router is one distinct element and routers are coupled based
on their physical connections around the globe. Other examples of discrete complex
systems include food webs, power grids, the World-Wide-Web, social interactions,
and neuron networks. Unlike simple systems, an understanding of complex systems
cannot be gained by only examining the individual components. Modeling the way
these components are interconnected is vital to understanding the system as a whole.
Graphs provide a mathematical construct to study how these complex systems are
connected. Consequently, the study of complex systems is closely related to the study
of graphs.

1.1 Graph Theory

A graph (or network) is a set of vertices with edges between them. Vertices, also
called nodes, are the objects that make up our system, while edges describe how
they are connected. For example, in a model of the World-Wide-Web each website
is a vertex and each hyperlink is an edge connecting two vertices. Depending on the
complex system in mind, edges can be either directed or undirected. In our World-
Wide-Web example edges are directed, since a link from your homepage to CNN.com
does not guarantee a link from CNN.com to your homepage. In contrast, a graph of
the Internet such as Figure 1.1 has undirected edges, since routers (in general) send
and receive packets for all their connections. We will only consider undirected edges
in this project; however, the experiments can be extended to include directed edges.

Vertex i and j are said to be adjacent if they have an edge connecting them. The
degree of vertex i, denoted ki, is the number of vertices adjacent to i (for directed
graphs there is a distinction between a vertex’s in-degree and out-degree). In addition
to the assumption that our graphs are undirected, we will also assume our graphs are
simple, which means our graphs do not have self-loops (edges that start and end at the
same vertex) or multi-edges (more than one edge connecting two vertices). Although
these may seem like further restrictions, graphs with self-loops or multi-edges can be

1

Figure 1.1: A graph of a medium-sized ISP’s core network. Blue and red nodes rep-
resent ISP routers, while grey nodes represent customers. Edges show which routers
are physically connected to each other, based on hop-limited packet probes. Created
as part of the Scan project by Ramesh Govindan, Anoop Reddy and colleagues, at
the Information Sciences Institute. (http://www.isi.edu/scan/scan.html)

made equivalent to simple graphs by duplicating the offending vertex.
It is intuitive to depict graphs visually using circles for vertices and lines for edges,

but actual manipulation and storage of graph information for computers requires the
use of matrices, which will be discussed in section 1.3.

1.1.1 Properties of graphs

Degree distributions

The simplest tools for the categorization of complex systems is identifying the asso-
ciated graph’s degree probability density function, or just degree distribution,

p(k) =
1

n

∑

∀i|ki=k

1 (1.1)

where n is the number of nodes in the graph, and ki is the degree of the ith node.
In other words p(3) would be the fraction of vertices with a degree of 3. By plotting
this distribution, we discover that most well-formed graphs follow either Gaussian,
exponential, or power-law shaped curves. We can distinguish between the most fun-
damentally different graphs based on which curve their degree distribution follows,
and large amounts of research has been done to show what properties are specific to
each distribution.

In addition, the cumulative degree distribution is defined to be

P (k) =
1

n

∑

i≤k

p(i) (1.2)

2

and contains the exact same information; however, as vividly illustrated in [LAT+05],
the simple degree distribution in equation 1.1 can often be visually misleading com-
pared to plots of equation 1.2. As an example, observe figure 1.2. In this example an
exponential distribution could be easily mistaken for a power-law distribution if equa-
tion 1.1 were plotted. With this in mind, we will only use the cumulative distribution
function in figures throughout the project.

 1

 10

 100

 1000

 10 100 1000 10000

F
re

q
u

e
n

cy

Degree
 1

 10

 100

 1000

 10 100 1000 10000

R
a

n
k

Degree

Figure 1.2: A carefully chosen exponential distribution (plotted in red +) and power-
law distribution (plotted in green ×). The plot on the left is the degree distribution,
whereas the plot on the right is the cumulative degree distribution. Notice that both
x and y axis are in log scale, so a power-law distribution y = x−α should appear
as a straight line. Unfortunately, the exponential distribution incorrectly appears to
follow a power-law in the frequency plot, while in the cumulative plot the power-law
distribution can be correctly identified.

Clustering coefficients

In the search for an effective secondary characteristic to use in narrowing this broad
classification, several researchers have noticed that naturally forming systems tend
to display modularity. We consider a network to be modular if it contains groups
of nodes that are very well connected amongst themselves, but loosely connected
to nodes outside their group. A related measure is the clustering coefficient of a
vertex. Specifically, clustering occurs when two different neighbors of a given node
also happen to be connected. This occurs frequently in real-world complex systems.
For example, in social networks if you are friends with two people it is very likely
that they are also friends with each other. The formal definition of the clustering
coefficient for vertex i is

ci =
ti

(

ki

2

) (1.3)

where ti is the number of times two vertices adjacent to i are connected, or visually
the number of completed triangles connected to i. So, ci is a ratio of how many of
i’s neighbors are connected, over how many could possible be connected. See the
example in figure 1.3.

3

Although the average clustering coefficient gives a general sense of how much
clustering is occurring in a graph, even more information can be gleaned from the
clustering coefficient distribution. Combined with information about a graph’s degree
distribution, the clustering coefficient distribution provides a second tier of categoriza-
tion amongst graphs. In particular, this gives us a way to distinguish between graphs
which follow a strict hierarchy in their construction, and graphs that are completely
unstructured.

Shortest path length

Another key measure when considering graphs of complex systems is the average
shortest path length, which is taken over all pairs of nodes. Psychologist Stanley
Milgram, after his sociology experiments in 1976, showed that the average shortest
path length between two random US citizens was about 6 acquaintances, and coined
this the small-world effect. It turns out that many other complex systems also exhibit
this same property, and despite a large number of vertices, a path with a small number
of edges on the order of log(n) exists between almost any two nodes (although finding
this path is not always easy). In popular culture this phenomena is often referenced
as the “six degrees of separation”, a theory that anyone on earth can be connected to
another in six links, and has been popularized by a movie of the same name as well
as the “six degrees of Kevin Bacon” trivia game.

1.1.2 Types of graphs

Regular graphs

The simplest graphs have a fixed degree distribution, meaning that every vertex has
the same degree. These graphs are called regular graphs. There are a few special
cases of regular graphs, including complete graphs, where every vertex is connected
to all other vertices, and null graphs, which have no edges. Another special case of
regular graphs are lattices, which have evenly spaced vertices, each connected only to
the nearest neighbors such as Figure 1.4. An interesting property of lattices is that,
although they do not display the small-world property, by taking a small number of
randomly chosen edges and “rewiring” them to another vertex, small-world properties
emerge very quickly. [WS98]

Results on regular graphs are usually very straightforward; however, they they
correspond only to oversimplifications of complex systems.

Figure 1.3: The clustering coefficient of the red vertex is 4
6
, since only 4 out of the

possible 6 edges between the red node’s neighbors exist.

4

Erdös-Rényi random graph

Perhaps the most studied variety of graph is the Erdös-Rényi random graph, or Gn,p

construction, in which we take n vertices, and between each pair of vertices create an
edge with probability p. First defined by Paul Erdös and Alfréd Rényi in [ER59], ran-
dom graphs were the first big step in graph theory toward modeling discrete complex
systems. Many results can be obtained for these graphs in the limit for large n. In
particular, this type of graph is often referred to as a Poisson random graph, since for
large n the degree distribution tends toward a Poisson distribution [CNSW00]. These
graphs are useful for systems with connections best described by an average degree,
and mimic some properties seen in real networks such as the small-world effect. Un-
fortunately, they do not exhibit any clustering, and real-world complex networks only
rarely have a Poisson degree distribution.

Power-law degree distribution

As the capacity for computers to manage large quantities of data increased, it became
clear that the old Erdös-Rényi random graphs were not a good reflection of the
complex systems researchers were interested in studying. Upon inspection, the vast
majority of real-world networks display a power-law cumulative degree distribution
of the form

P (k) = k−(1+γ) (1.4)

where γ is a constant, and in practice for most networks 2 ≤ γ ≤ 3 [BA99][New03].
Unlike Erdös-Rényi random graphs, these networks have numerous vertices with very
low degree, and far smaller numbers of high degree vertices. See figure 1.5 for an
example power-law degree distribution. The most prominent explanation for why
real world systems follow this pattern is called preferential attachment, discussed in
section 2.2.2, an algorithm for naturally forming graphs with a power-law degree
distribution. The actual reason for the ubiquity of power-law degree distributions
is still undecided; however it has been shown that high variability self-dependent
data like what we often see in complex networks is not subject to the Central Limit
Theorem, and should therefore be expected to take on other forms than Gaussian
[WADL04].

Figure 1.4: An example of a lattice.

5

1.1.3 Scale-free vs. Scale-rich

The term scale-free was coined in 1998 by Barabási Albert-László when they examined
a portion of the World Wide Web with the help of a web-crawler, and discovered a
power-law degree distribution, instead of the expected Poisson distribution. As more
information and computing power became available it was quickly discovered that a
majority of complex systems had a similar structure, and subsequently it has become
a hot topic for research, with Barabasi’s original paper receiving over 750 citations
since 1999.

Several different criteria for “scale-freeness” have been proposed. Barabási’s orig-
inal description included any graph with a power-law degree distribution; however,
many more properties have been assigned to it by other researchers. A rigorous,
structural definition of scale-free was given in [LAT+05]. For a given power-law de-
gree distribution:

s(g) =
∑

(i,j)∈E

kikj (1.5)

where km is the degree of node m, and (i, j) ∈ E means that vertex i and j have an
edge between them. In this definition graphs with a high s(g) are called scale-free,
while graphs with a low s(g) are called scale-rich. S(g) is the normalized version of
s(g), but as of yet there is no algorithm for constructing the largest s(g) graph.

Scale-free graphs occur when high-degree nodes connect to each other, and scale-
rich graphs occur when high-degree nodes are separated and connect only to lower
degree nodes (see figure 1.6). Together these two terms help to separate the set
of graphs with power-law degree distributions into two separate smaller categories.
In addition to their core structure of interconnected high degree nodes, scale-free
networks are also self-similar in the same sense as fractals: a small subgraph of the
network looks similar to the overall network (see figure 1.7). Finally, given any graph
with a power-law degree distribution, degree-preserving random rewiring has a high
probability of creating a scale-free graph as opposed to a scale-rich one. In this sense
scale-free graphs are considered more random and naturally occurring than scale-rich
graphs, which have to be artificially constructed and do not often arise naturally
[LAT+05].

1.2 Linear Algebra

In this project we assume an elementary knowledge of linear algebra, including matrix
multiplication, inverses, and determinants. For a review of this material see [Lay94].
The material presented here is the minimum needed to introduce the notion of al-
gebraic connectivity, which will be our metric to measure the synchronizability of a
graph.

1.2.1 Transpose and Hermitian adjoint

If a matrix A = [ai,j], then the transpose of A, denoted AT , is the matrix with rows
and columns switched, that is AT = [aj,i]. The Hermitian adjoint of A, denoted A∗,

6

Preferential attachment data

Calculated power-law best fit

Figure 1.5: An example of a power-law degree distribution shown on a log-log plot.
Data is from a random preferential attachment graph (see section 2.2.2). Solid line
is a best-fit approximation power-law curve.

Figure 1.6: Two graphs with the same degree distribution that can be distinguished
by their “scale-freeness”. On the left is a scale-free graph, with a high degree hub. The
right graph is HOTnet, a scale-rich graph with a low degree central core developed
in [LAT+05] as an efficient Internet router topology.

7

is defined to be
A∗ = ĀT = [āj,i] (1.6)

where x̄ is complex conjugate of x, i.e. (a + bi) = (a − bi). In other words we take
the complex conjugate of each entry, and then the transpose of the matrix.

1.2.2 Eigenvalues

A vector x and scalar λ are said to be an eigenvector and its associated eigenvalue of
a matrix A if x 6= 0 and

Ax = λx (1.7)

In other words, multiplying A by the vector x results in a multiple of x. For example,

[

0 2
1 1

] [

1
1

]

= 2

[

1
1

]

(1.8)

Interpreted geometrically, if we think of A as a transformation, a vector is an
eigenvector if its direction is not changed after the transformation. For example, a
transformation that only stretches all vectors along the x direction would have an

eigenvector

[

0
1

]

. The requirement that x 6= 0 is necessary, since A · 0 = λ · 0 for any

A and λ.
Notice that Eq. 1.7 is equivalent to

(A − λI)x = 0 (1.9)

which has a non-trivial solution exactly when (A−λI) is singular, which is equivalent
to det(A − λI) = 0 having a non-trivial solution. This determinant is a polynomial,
and so det(A−λI) is called pA(t), or the characteristic polynomial of A, and the roots
of pA(t) are the eigenvalues of A. Since every polynomial of degree n is guaranteed by
the fundamental theorem of algebra to have exactly n complex roots, it also follows
that any n×n matrix is guaranteed to have n complex eigenvalues. We will call these
n (not necessarily distinct) eigenvalues λ1, λ2, . . . , λn.

1.2.3 Hermitian matrices

A matrix is said to be Hermitian if A = A∗, in other words A is it’s own Hermitian
adjoint. Notice that for a matrix with all real entries A∗ = AT , therefore a matrix
with all real entries is Hermitian if and only if A = AT , the formal way of expressing
that A is symmetric. Hermitian matrices have numerous useful properties, and are
often viewed as a natural generalization of real numbers to matrices. A property of
Hermitian matrices important to this project is that the eigenvalues of a Hermitian
matrix are always real numbers. The proof of this is simple, but requires more
background than is included in this project, see [HJ85]. Since each eigenvalue is a
real number, it is natural to order the eigenvalues of Hermitian matrices such that
λ1 ≤ λ2 ≤ . . . ≤ λn.

8

1.2.4 Positive definite matrices

A subset of Hermitian matrices with even more special properties are positive definite
matrices. A Hermitian matrix is positive definite if and only if all its eigenvalues are
greater than 0. Similarly, a Hermitian matrix is said to be positive semi-definite if
and only if every eigenvalue is greater than or equal to 0. If Hermitian matrices are
analogous to real numbers matrices, then positive definite matrices are analogous to
the positive numbers.

1.3 Algebraic methods in graph theory

A useful tool for storing and manipulating graphs is the adjacency matrix. In an
adjacency matrix, entry ai,j is 1 if there is an edge between vertex i and vertex j, and
is 0 otherwise. This form is often the easiest to analyze and manipulate. Another
related data structure is the adjacency list, an array containing one list for each node
of all adjacent nodes. An adjacency matrix requires O(n2) space, since it includes
information about every possible link regardless of whether it is present or not, while
an adjacency list requires only O(n·k̄) where k̄ is the average degree. For sparse graphs
with many vertices it is more space efficient to use the adjacency list; however, the
disadvantage is that in practice lists are more difficult and computationally expensive
to manipulate than a matrix.

The degree matrix of a graph is a diagonal matrix with ai,i = ki and all other
entries 0.

1.3.1 Laplacian matrix

The Laplacian matrix of a graph is defined as L = D − A, where D is the degree
matrix, and A is the adjacency matrix [Mer98]. Notice that because our graphs
are undirected, D − A is a symmetric matrix with all real entries, and therefore a
Hermitian matrix. A sufficient condition for a matrix to be positive semi-definite is

∀i, ai,i ≥
n

∑

j=0|j 6=i

|ai,j| (1.10)

and to be Hermitian [HJ85]. In our case this is always met with equality, since the
diagonal entry of each row in L is the degree of vertex i, and each edge connected to
i results in a −1 in the same row. So the sum of all off diagonals in a row is always
ai,i. Therefore L is a positive semi-definite matrix.

Since L is semi-definite (and therefore also Hermitian), we will adopt the ordering
convention 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn.

A simple observation to make is that λ1 = 0 for any Laplacian matrix, because
[1 · · ·1]T is an eigenvector. Since any given row’s diagonal entry is ki, and there is a

9

-1 for each connection (a total of ki of them), we have













k0 {0, −1}
k1

. . .

{0, −1} kn





















1
...
1









= 0









1
...
1









(1.11)

In fact, this follows from the more general theorem that the multiplicity of the
eigenvalue 0 is equal to the number of connected components of the graph [Moh97].
Thus, a graph with 2 distinct separate connected components will have λ1 = 0, λ2 = 0,
and λ3 > 0.

1.3.2 Algebraic connectivity

The second smallest eigenvalue of the Laplacian matrix, λ2, is named the algebraic
connectivity, a term introduced by M. Fiedler in [Fie73]. Adding new edges to a graph
always increases (or leaves unchanged in special situations) the algebraic connectivity,
and in general higher λ2 indicates graphs with smaller diameter and higher connec-
tivity. [LS81] Fielder also showed that λ2 is always less than the minimum number
of vertices that would need to be removed to disconnect the graph. As mentioned
earlier, in the extreme condition λ2 = 0 for a disconnected graph. Several other in-
equalities have been discovered that reinforce the label “algebraic connectivity”. See
appendix A for an example calculation of λ2.

It has been pointed out in [DHM04] that for general graphs with skewed degree
distributions (such as those we will be considering), it is more appropriate to consider
an alternate normalized Laplacian matrix when calculating the algebraic connectivity.
However for unweighted graphs this difference is unimportant, and therefore we will
use the simpler Laplacian matrix in the interest of computational efficiency.

1.4 Synchronizability

Now that the mathematical foundations are set, we introduce the primary notion we
wish to discuss. The concept of synchronization is familiar informally to us already.
We see it in a pair of clocks ticking together or hear it when musicians play to the
same rhythm. In these examples it is clear to us why they should be synchronized,
however synchronization often occurs unexpectantly as well. For example, the well
documented occurrence of synchronized firefly flashing. Although these events often
begin as asynchronous random noise, they converge into a recognizable pattern.

The concept behind the rigorous definition of formal synchronization is that as
time progresses the difference between the state of any two vertices becomes very
small. Let us denote the state of vertex i at time t by xi(t). How does the state of
vertices change over time? Clearly if vertices do not take any note of their neighbors
there is no chance for synchronization. Further we assume that all vertices are iden-
tical and conform to the following generic discrete time equation to determine their

10

next state

xi(t + 1) = f(xi(t)) + κ





1

ki

∑

j|(i,j)∈E

f(xj(t)) − f(xi(t))



 (1.12)

where (i, j) ∈ E denotes an edge between i and j [ABJ04]. κ is called the coupling
strength and is a scalar describing the extent to which neighboring vertices effect the
state of a vertex. f(x) is any differentiable function that describes the behavior of a
vertex in the absence of outside influence: notice that if κ = 0, the equation is simply
xi(t + 1) = f(xi(t)).

Then we say that a network synchronizes if for all i, j

lim
t→∞

|xi(t) − xj(t)| = 0 (1.13)

1.4.1 Measure of synchronizability

It is well established that for diffusively coupled equations such as 1.12, the alge-
braic connectivity is the essential measure of network synchronizability [JJ01][ABJ04].
Larger λ2 means a graph will synchronize for a wider range of values for κ. A de-
tailed example of this relationship has been shown in [JJ01] for the quadratic map
f(x) = 1 − ax2. A useful small example is shown in figure 1.8.

11

Figure 1.7: An example scale-free graph to display self-similarity. Notice that the red
branch looks exactly like the whole graph if we prune degree vertices of degree one.
A second pruning results in a graph similar to the next tier of branches, and pruning
a third time results in a single leaf node. This internal mirroring between branches
and the larger graph structure is self-similarity.

Figure 1.8: These two graphs have the same degree sequence, however notice that
the graph on the left seems weakly connected. Intuitively we expect the graph on the
right to be more synchronizable. On the left, λ2 = 0.238, and on the right λ2 = 0.925.
(see appendix A for an example calculation of λ2)

12

Chapter 2

Relating Network Topology to

Synchronizability

The primary focus of this project is to explore the general relationship between net-
work topology, clustering coefficient distributions, and synchronizability, as well as to
specifically compare scale-free and scale-rich graph synchronization. Although there
are some relationships which follow directly from properties of algebraic connectivity
(for example, adding an edge always increases synchronizability), other relationships
are not obvious (for example, whether regular or geometric graphs should have better
synchronizability).

2.1 Sampling from a family of graphs

Obviously, we cannot pick a single graph from each topology and compare them to
make any general claims. Instead we would like to take a sampling of graphs from
some family [TGJ+02]. We should only compare graphs that have the same number
of vertices since it would be unfair to compare a small graph of 5 nodes (which will
synchronize under almost any topology) with a massive scale-rich network of 10,000
vertices. In addition to the popular dynamic graph growth models (described in Sec-
tion 2.2), we would also like to explore graphs with a specific degree distribution, since
this is how we usually categorize different kinds of networks. In general, even graphs
with the same degree distributions can have vastly different properties [CHK+01].

It is important that we sample from our family of graphs at random and without
any biases toward a certain subset of special graphs. For example, although many
consider preferential attachment as the mechanism that creates real world networks
with power-law distributions, this mechanism is biased toward creating scale-free
networks as opposed to scale-rich ones since vertices added early in the process are
far more likely to get most of the connections and become network hubs [TGJ+02].

For this reason, although we will consider some interesting growth models where
appropriate, we must also use static graph generation.

13

2.1.1 Static graph generation

Unlike graphs created via some well defined growth process, in the creation of static
graphs all vertices are placed and assigned degrees selected randomly from the par-
ticular degree distribution of interest. Unfortunately, static random graphs are sur-
prisingly difficult to construct. The naive technique of connecting edges can result in
disconnected graphs or leftover edges. Fortunately, the problem of quickly generating
connected random graphs given a prescribed degree distribution has been recently
addressed in [VL05]. The outline of the process is to first realize a simple graph with
the degree distribution desired, connect the graph without changing the degrees, then
finally shuffle the edges sufficiently to make it truly random (while keeping the graph
simple and connected).

Realizable degree sequences

Not every degree distribution can be realized as a graph. For example, if the degree
sequence chosen is {4,2,1}, it is impossible to form a graph since the degree 4 vertex
only has two possible adjacent vertices (multiple edges between two nodes are not
allowed). Thus, a necessary condition for a degree sequence to be realizable is that
for every subset of j highest degree nodes, their total edges can be “absorbed” amongst
themselves and the other vertices in the graph. Formally, for 1 ≤ j ≤ n − 1 :

j
∑

i=1

ki ≤ j(j − 1) +
n

∑

i=j+1

min(j, ki) (2.1)

Similarly, there is a necessary condition for a degree sequence to be realizable as
a connected graph,

n
∑

i=1

ki ≥ 2(n − 1) (2.2)

In fact, the Erdös-Gallai theorem shows that these are both necessary and suffi-
cient, so these are the only equations we must check to ensure a degree distribution
we generate is valid [Ber73][GMZ03].

Havel-Hakimi algorithm

Given a realizable degree sequence, we can create a simple realization of a graph by
using the Havel-Hakimi algorithm [Hak62][Hak63].

Step 1. Imagine for each degree in the degree sequence creating a vertex with k

“stubs”, or edges connected to the vertex with their end point not yet assigned.
Now, pick the node with smallest number of stubs, A, and connect each of its
stubs to the nodes with highest number of stubs (using up one stub from node
A and one from the other node). Repeat until all stubs are used up. This
ensures that the necessary condition in equation 2.1 is met at each iteration.
This graph is not randomly chosen and need not even be connected, but it gives
us a suitable graph with the required degree distribution.

14

Step 2. If the graph from step 1 is connected, we can proceed directly to the final
step, otherwise we must connect the graph. Although difficult in practice,
conceptually it is simple to take an unconnected graph and make it connected.
Equation 2.2 guarantees that one of the disconnected components contains a
cycle. We can merge two separated components by taking an edge in the cycle
and an edge in the disconnected component, and then swapping their end points.
This joins the two components and does not alter the degree of any vertex. After
repeating the process as many times as needed, we arrive at a simple connected
graph. In practice, it is usual easier to simply shuffle the graph randomly (see
step 3) until the graph happens to connect, but this is not necessarily reliable.

Step 3. The final step is to shuffle the edges of the graph in order to arrive at a
truly random instance from the space of all possible graphs with this degree
distribution. Consider the following procedure. Repeatedly pick two edges at
random, say (a, b) and (c, d) with distinct endpoints. If (a, c) and (b, d) don’t
already exist, then we remove the original edges and add these new edges. No-
tice that degrees remain unchanged under this process. A theorem of Taylor
has shown that by this process, any connected graph can be transformed to any
other connected graph with the same degree sequence [Ber73]. It follows then
from Markov chain theory that this process converges to a uniform distribu-
tion, i.e. if we repeated this procedure an infinite number of times we would
have a perfect uniformly selected random graph. The question of how long the
process needs to run to be nearly a uniform distribution is still a very difficult
problem. Algorithms such as CFTP or Fill’s algorithm are theoretically capable
of providing an estimate, but require remodeling the Havel-Hakimi algorithm
explicitly as a Markov chain simulation [CLR01][Dim00]. Instead in this project
we choose to include the entire path of rewirings, with the understanding that
our datasets (generally over 500,000 datapoints) are sufficient to provide a fair
depiction of the family.

2.2 Models of network growth

The concept of the Havel-Hakimi algorithm is to take properties we observe in a
network, specifically the degree distribution, and create graphs in order to meet these
observations; however, if our graphs are representative of real complex networks, it
does not explain why the network displays these properties, or by what process the
network was constructed. Several models have been proposed that attempt to answer
these questions.

2.2.1 Small-world model

Watts and Strogatz propose a model of network growth which begins from a ring
shaped lattice (as in figure 1.4), each node connected to its k closest neighbors.
Next, a percentage p of the links are randomly rewired by disconnecting an end and

15

reconnecting it to a random node, thus allowing the model to be controlled between
a regular lattice (p = 0) and a highly disordered graph (p = 1). Watts and Strogatz’s
interesting observation was that even for very small values of p, this model exhibits
the small-world effect described in section 1.1.1 [WS98].

2.2.2 Preferential attachment

The preferential attachment model was originally discovered in 1965 by Derek de Solla
Price and called cumulative advantage, then recently rediscovered by Barabási and
Albert in 1998 where it received its current name. In the preferential attachment
model, nodes are added to the graph one at a time and are more likely to connect to
nodes that already have a high degree than to low degree nodes. This results naturally
in a power-law degree distribution, and it has been proposed that this is the primary
explanation for why power-law networks are so abundant in the real world. There
are several critiques of this model, most importantly the winner takes all effect, in
which a single node tends to grow so rapidly in degree that it is essentially connected
to every node, resulting in star-shaped networks.

2.2.3 Geometric graph

Geometric graphs are a combination of random graphs and lattices. Vertices are each
assigned random locations (usually inside a fixed shape on the xy plane), and rather
than connecting to each other randomly, vertices are connected if they fall within
a fixed radius of each other. Geometric graphs generally form Poisson distribution
for large n if you ignore boundary effects caused by constraining the random points
to a finite space [Pen03][IA05]. Some interesting work has been done to extend the
concept of geometric works into arbitrary degree distributions [RCbAH02], but we
will not discuss them here. An example geometric graph inside the unit circle is
shown in figure 2.1.

16

Figure 2.1: A geometric graph inside the unit circle with 200 nodes. The connection
distance r is 0.29.

17

Chapter 3

Results

3.1 Erdös-Rényi graph data

We first present our results about the synchronization of random Erdös-Rényi graphs
as a baseline from which we will measure other graphs. Our simulation created an
empty graph of n nodes, and assigned each possible connection an edge with probabil-
ity p as discussed in section 1.1.2. Any disconnected graphs created were discarded.
Separate simulations were run for n = {100, 200, 300} and for p = { 2

n
, 2.5

n
, · · · , 5

n
}.

The results are shown in figures 3.1 and 3.2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 2 2.5 3 3.5 4 4.5 5 5.5

λ
2

-
A

lg
e

b
ra

ic
 c

o
n

n
e

ct
iv

it
y

Average degree

Erdös-Rényi random graph

N = 100
N = 200
N = 300

Figure 3.1: Plot depicting the relationship between average degree and λ2 for ran-
domly generated Erdös-Rényi graphs. n is the number of nodes in the network. Each
of the 3 sets contains 1400 data points.

18

As the average degree of nodes in the graph increases, both λ2 and the average
clustering coefficient increases (see figure 3.2). This is expected, as adding more
edges to a graph is guaranteed to increase λ2, and also provide more opportunities
for triangles to form in the network. Perhaps not as obvious is that while keeping the
average degree constant, increasing the number of nodes in the network is damaging
to both properties. In fact, since the network is connected completely at random,
increasing the number of nodes makes it more unlikely for neighbors of a node to
connect by chance, and therefore decreases the clustering coefficient. By reducing
the number of tightly coupled clusters in the network and creating a larger loosely
connected network, the ability of the network to synchronize is drastically reduced.

3.2 Geometric graph data

Our simulation created geometric graphs by randomly assigning (r, θ) polar coor-
dinates to each vertex inside the unit circle (for an interesting observation of edge
effects due to using the unit square instead, see appendix B). Edges were then added
between any nodes within a radius r of each other. Separate simulations were run for
n = {100, 200, 300} and for r = {0.25, 0.27, 0.29, 0.31, 0.33}. The results are shown
in figures 3.3 and 3.4. An example graph for n = 200 and r = 0.29 is shown in figure
2.1.

As expected, even for this different topology the fundamental relationship that
higher average degree predicts a large average clustering coefficient and large λ2 is
still true. As we increase n, we are forcing more nodes into the same confined space, so
it is not surprising that the despite using the same values for r in each experiment, the
simulation with 300 nodes has significantly higher average degree than the simulations
with less nodes. Despite this, it is clear that for any given average degree large
numbers of nodes still reduce the λ2 and the clustering coefficient.

For nodes distributed evenly in a geometric graph, we would expect a graph of 100
nodes to have the same average degree as a graph of 200 nodes when the connection
area is double (or equivalently, that the radius is

√
2 longer). As a result, for a given

average degree as we increase n, the distance between connected nodes r decreases,
and it requires crossing more nodes to traverse from one side of the unit circle to the
other. This impacts the ability of a network to synchronize negatively, since signals
are more difficult to pass across the network.

In fact, compared against the Erdös-Rényi graphs, we see that the geometric
graph synchronizability is remarkably worse for a given average degree. Signals in
the network have to propagate across physical space from node to node since there
are no random links that cross the entire network. This presents a fundamental
difficulty for complex systems confined to a physical setting to synchronize, and shows
us that a network created by linking closest neighbors will be highly resistant to
synchronization.

In contrast, geometric graphs have remarkably high average clustering coefficient.
Clearly, if two of your neighbors are inside the connection radius r, then it is very
likely that they will also be within that radius of each other. For the special case

19

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 2 2.5 3 3.5 4 4.5 5 5.5

C
lu

st
e

ri
n

g
 c

o
e

�
ci

e
n

t

Average degree

Erdös-Rényi random graph

N = 100
N = 200
N = 300

Figure 3.2: Plot depicting the relationship between average degree and clustering
coefficient for randomly generated Erdös-Rényi graphs. n is the number of nodes in
the network. Each of the 3 sets contains 1400 data points. (Clustering of data points
is due to an uneven sampling of p).

 0

 0.5

 1

 1.5

 2

 2.5

 5 10 15 20 25 30 35 40 45 50 55 60

λ
2

(A
lg

e
b

ra
ic

 c
o

n
n

e
ct

iv
it

y)

Average degree

Geometric graph on unit circle

N = 100
N = 200
N = 300

Figure 3.3: Plot depicting the relationship between average degree and clustering
coefficient for randomly generated geometric graphs on the unit circle. n is the number
of nodes in the network. Each of the 3 sets contains 700 data points.

20

of geometric graphs, if we ignore edge conditions we can use simple calculus to show
analytically the expected clustering coefficient value. First we simplify the problem
by assuming the connection radius r = 1, since the answer is independent of r.
Consider the node of interest to be placed at (0, 0), and it’s two neighbors (r0, θ0)
and (r1, θ1). Due to symmetry, we can rotate this picture to place (r0, θ0) at (r0, 0)
without changing the problem. Now we can imagine two unit circles, one centered at
(0, 0) and one centered at (r, 0). The second node must be inside the first circle (since
it is a neighbor of our node of interest), but if the second node is placed inside the
intersection of the two circles, then all three will be within a distance of 1 and form
a triangle. So, we simply calculate the area of the intersection (the inside integral of
equation 3.1) and divide by the total area of the circle, π. Integrating this over r0

from 0 to 1 gives us the final answer.

∫ 1

r0=0
(
4 · ∫ 1

x=
r0

2

(
√

1 − x2)

π
) =

16 − 9
√

3 + 4π

6π
= 0.68846 (3.1)

We can see the data approaching this value from beneath, due to edge effects
(nodes on the edge of the circle do not have neighbors outside the circle to connect
with, and thus have worse clustering coefficients and lower degree). Since nodes are
actually placed at random positions, there is large variance in the clustering coefficient
for any one graph, but this upper bound becomes increasingly accurate as n increases.

3.3 Preferential attachment graph data

In Barabasi’s preferential attachment model, nodes are added one at a time with a
fixed number of incoming connections k. Then, for each incoming stub, a random end
of an edge is chosen from the existing graph, and the node at this end is linked to the
new node. In other words, a node with degree 6 is twice as likely to receive one of the
new connections as a node of degree 3. Despite the popularity of Barabasi’s original
preferential attachment model it has several disadvantages, one of which is that it
can only generate graphs with average degree of exactly 2k. We instead choose to use
a slight variation on this basic model, in which the number of incoming connections
for a new node is uniformly random from 1 to k. This results in a wider variety of
graphs with different average degrees centered around k + 1. Separate simulations
were run for k = {2, 3, 4, 5, 6} and for n = {100, 200, 300}. The results are shown in
figures 3.5 and 3.6.

We can see an unexpected phenomena occurring in figure 3.5, resulting in some
clustering of datapoints along the y axis, especially just beneath λ2 = 0.4. By observ-
ing specific graphs on opposite sides of this divide, it became clear that this strange
behavior was due to another shortcoming of Barabasi’s preferential attachment model
called the “winner takes all” scenario. In this scenario an early node in the network
growth by chance gains an unusually large number of connections very quickly. Since
new nodes prefer to connect with high degree nodes, a single node of very high degree
can cause nearly all new nodes to connect with it (making the situation even worse for

21

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 5 10 15 20 25 30 35 40 45 50 55 60

C
lu

st
e

ri
n

g
 c

o
e

�
ci

e
n

t

Average degree

Geometric graph on unit circle

N = 100
N = 200
N = 300

Figure 3.4: Plot depicting the relationship between average degree and clustering
coefficient for randomly generated geometric graphs on the unit circle. n is the number
of nodes in the network. Each of the 3 sets contains 700 data points.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 2 3 4 5 6 7 8

λ
2

(A
lg

e
b

ra
ic

 c
o

n
n

e
ct

iv
it

y)

Average degree

Preferential Attachment

N = 100
N = 200
N = 300

Figure 3.5: Plot depicting the relationship between average degree and λ2 for ran-
domly generated networks using the preferential attachment model. n is the number
of nodes in the network. Each of the 3 sets contains 1000 data points. Clustering
along the x axis is due to sampling from integer values of k. Clustering along the y

axis is discussed in section 3.3.

22

the next new node). This occurrence is one of the major criticisms of Barabasi’s pref-
erential attachment model, and as we can see creates an uneven sampling of graphs.
See figure 3.7 for an example comparison of graphs on each side of the connectivity
gap.

This provides interesting information about the synchronizability of power-law
networks. In particular, a network which relies on a single highly connected hub is
less synchronizable than a network centered around a core of several nodes. This is
not immediately apparent, since one might expect that one central node could better
influence an entire network than several uncoordinated nodes. Apparently a single
node receiving many conflicting message from individual nodes is more difficult to
synchronize than a group of nodes each controlling a smaller portion of the network.

It is also of interest that although we still see the behavior that increasing n

decreases λ2, it is less pronounced than in the other examples. Regardless of the
number of nodes in the network, the preferential attachment model always creates
high degree hub nodes to which the rest of the network is connected. This structure
remains basically unchanged regardless of n, the only difference in λ2 as n increases
results from the increased number of stray low degree nodes extending further away
from the hubs.

3.4 Graphs with fixed degree distributions

We now turn our interest to statically generated graphs. In particular, we would like
to see how s(G), the scale-freeness of a graph, and λ2, the algebraic connectivity or
synchronizability, are related given a specific power-law degree distribution. We used
the Havel-Hakimi algorithm discussed in section 2.1.1 to generate an even unbiased
sampling from the space of possible graphs with the same degree distribution.

As can be seen in figure 3.8, it is difficult to make any general claims about λ2 based
on s(g). Although the highest λ2 values occur for relatively scale-free graphs, plenty
of scale-free and scale-rich graphs alike have very poor synchronizability. Similarly,
the most scale-free and scale-rich graphs do not have especially noteworthy λ2. The
relation between λ2 and the average clustering coefficient is shown in figure 3.9, and
is even less well defined.

Given a specific degree distribution, synchronizability is a property completely
independent of scale-freeness and clustering coefficient, and nothing can be assumed
based on these measures alone. It is especially important in applications to realize that
the number of connections to each node is not important to network synchronization,
rather the configuration of the network is of greatest importance.

23

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2 3 4 5 6 7 8

C
lu

st
e

ri
n

g
 c

o
e

�
ci

e
n

t

Average degree

Preferential Attachment

N = 100
N = 200
N = 300

Figure 3.6: Plot depicting the relationship between average degree and clustering
coefficient for randomly generated networks using the preferential attachment model.
n is the number of nodes in the network. Each of the 3 sets contains 1000 data points.
Clustering along the x axis is due to sampling from integer values of k.

λ2 = 0.366102 λ2 = 0.506224

Figure 3.7: A comparison between the “winner takes all” scenario, and another graph
generated through the preferential attachment method. Both graphs were generated
using the same method, with k = 5 and 100 nodes in the network. The size of a
node and its position along the x-axis are proportional to its degree. Also notice that
“winner take all” networks have significantly worse algebraic connectivity than their
counterparts.

24

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 21000 22000 23000 24000 25000 26000 27000 28000 29000

A
lg

eb
ra

ic
 C

on
ne

ct
iv

ity

s(g)

Degree preserving rewiring of preferential attachment graph

Figure 3.8: Starting from a pregenerated graph, each point represents a new graph
with the same degree distribution created by rewiring as described in section 2.1.1.
Graphs where λ2 = 0 are disconnected graphs.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

A
lg

eb
ra

ic
 C

on
ne

ct
iv

ity

Average Clustering Coefficient

Degree preserving rewiring of preferential attachment graph

Figure 3.9: Starting from a pregenerated graph, each point represents a new graph
with the same degree distribution created by rewiring as described in section 2.1.1.
Graphs where λ2 = 0 are disconnected graphs.

25

Chapter 4

Conclusions

The results of the previous chapter can be applied to interesting problems in var-
ious fields that deal with discrete complex systems. In many communications and
transportation networks, such as the Internet, cellphone networks, airline travel, syn-
chronization can result in congestion at the nodes, resulting in lowered efficiency, or
loss of data. In contrast, synchrony is highly desired in some self-organizing such as
P2P networks, the global positioning system, and neuron respiratory networks. An
understanding of the synchronizability characteristics of these networks is important
to identifying potential problems, as well as providing insight into the best techniques
for modifying or extending the networks as they grow.

4.1 Communication and information networks

The Internet has been a hot topic for research recently. Computers around the world
send packets into the network, and it is up to the relatively disorganized routers across
the globe to propagate these signals to their proper location. An important topic in
computer science specific to networking is how to avoid the inevitable congestion
on the Internet. 95% of packets sent over the Internet are sent using transmission
control protocol Reno (TCP Reno), which provides congestion control by halving its
output rate whenever it sees packet loss occuring, but is always slowly increasing its
output rate. While other TCP implementations (most notably TCP Vegas) have been
proposed, they have not been accepted at large, and as a result congestion resulting
in packet loss is constantly occuring at all routers around the world, resulting in
retransmissions of packets and wasted bandwidth. When overwhelmed with traffic,
naively implemented routers will drop all packets exceeding their queue length, and
all connections have a probability of seeing lost packets. As a result, synchrony occurs
as all connections half their speed and then slowly increase, only to overwhelm the
router again shortly. Although this is inevitable on routers connected directly to
computers, it can be avoided by connecting routers in such a way as to create a very
low λ2.

Although there is large debate about what the exact structure of the Internet is,
models similar to that proposed in [LAT+05] have a central core of powerful routers

26

and appear to generate networks with low λ2, which may explain why the Internet
has been successful despite the inevitable congestion, since it is unable to propagate
further into the network because of its structure.

4.2 Airline networks

Recently, some airlines have begun to push away from the older centralized hub net-
works toward newer decentralized systems, and have seen improvements in congestion
related delays [MSed]. It has been proposed that this is due to the basic differences
in network structure.

Our analysis of the random Erdös-Rémyi random graphs compared with the pref-
erential attachment model suggests this is true (see figures 3.1 and 3.5). Randomly
chosen power-law degree distributions such as those of a hub airline’s network on aver-
age have much better synchronization properties than randomly connected networks.
Airlines which have one single major hub may be at an advantage however, as we saw
that the “winner takes all” scenario resulted in a smaller λ2, similar to the random
networks. This generalization must be made carefully. We saw in section 3.4 that
merely moving from a hub network to a decentralized one is not sufficient to decrease
synchronizability. Networks must be constructed with synchronizability specifically
in mind, since the degree distribution is not sufficient to determine synchronizability.
Despite the general properties of these two different topologies, individual cases have
a wide variance and we cannot make a general guarantee without a specific network
in mind.

4.3 Neuron rhythmogensis

In mammals, a small group of neurons in the brainstem called the pre-Bötzinger
complex is responsible for generating a regular rhythmic output to motor cells that
initiate a breath. Disconnected, these neurons are unable to provide enough output to
activate the motor neurons, but their interconnected network structure allows them to
synchronize without any external influence and produce regular bursts. An example
of a typical neuron’s output is in figure 4.1.

V
m

4
0
 m

V

Figure 4.1: Example output from an individual neuron in the PreBötzinger complex.
This function corresponds to f(x) in equation 1.12.

27

Using a detailed simulation written by John Hayes at the College of William and
Mary, we were able to experiment with how different network topologies control the
effectiveness of the pre-Bötzinger complex. Intitally we ran the simulation with the
smallest and largest λ2 networks from figure 3.8. Unfortunately, both graphs were
sufficiently good synchronizers, and it was difficult to visually distinguish the two from
each other. We instead ran a similar experiment as in section 3.4, but starting from a
geometric graph. The results of the two simulations can be seen in figure 4.2, and are
very compelling evidence. Turning back to the original power-law graphs, we used
autocorrelation analysis as in [KPV04] to statistically detect better synchronization
in the higher λ2 network. The results are shown in figure 4.3, and confirm that
although the difference is undetectable at a glance, the higher λ2 value statistically
has better synchronization. The difference in autocorrelation is largest during the
refractory (non-spiking) period, indicating that the two graphs have similar behavior
during the spikes, but not between spikes.

4.4 Open problems

4.4.1 More practical measure

Although λ2 is an powerful tool for estimating networking synchronizability, in prac-
tice computing the eigenvalues of large matricies is an expensive computation. Math-
ematical techniques for computing only λ2 without the other eigenvalues exists, but
ideally we could find a measure strongly correlated with λ2 that is easier to calculate.
We had initially hoped s(g) would be such a measure, but as shown in section 3.4
this turned out not to be the case.

4.4.2 Algorithm for largest and smallest λ2 graphs

Given a specific degree distribution, it is not clear how to construct the graphs with
maximum and minimum λ2. It has been shown in [ABJ04] that as n increases, graphs
can be constructed with arbitrarily small λ2; however no algorithm has been found
for fixed n and this algorithm does not gaurentee the smallest possible graph. The
discovery of this algorithm would provide a much deeper insight into what structural
properties effect λ2.

4.4.3 Synchronizability under targeted attacks

Graphs with power-law degree distribution are well known to be resilient to random
node failure, but highly vulnerable to targeted attacks. This comes as a result of a
small number of high degree nodes controlling network synchronization. We suspect
that graphs with high λ2 may be more resilient against these targeted attacks than
those with low λ2, due to increased redundancy in the network structure, but this
remains to be verified experimentally.

28

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70

Time (s)

Neurons spikes for λ2 = 0.024913

 0

 100

 200

 300

 400

 500

 600

0 10 20 30 40 50 60 70

Time (s)

Neuron spikes for λ2 = 0.97452

Figure 4.2: Raster plot of neuron output for two sample networks with extreme λ2

values. A point at (x, y) indicates neuron x is spiking at time y. The higher λ2

network displays much stronger synchronization amongst all nodes as predicted, as
well as a quicker breath frequency.

29

80

60

40

20

A
u
to

c
o

rr
e
la

ti
o
n

 c
o
e
ff
ic

ie
n

t

6050403020100

Time lag (s)

 autocorrelation for λ2 = 0.055883
 autocorrelation for λ2 = 0.20587

7

6

5

4

3

2

1

0

s
p
ik

e
s
/b

in

6050403020100

time (s)

 λ2 = 0.20587

7

6

5

4

3

2

1

0

s
p
ik

e
s
/b

in

6050403020100

time (s)

 λ2 = 0.055883

Figure 4.3: An autocorrelation plot of pre-Bötzinger complex synchronization on two
graphs with the same degree-distribution, but with extreme λ2 values. Although the
two spike summaries seem indistinguishable (bottom two figures), an autocorrelation
analysis (top) shows that the higher λ2 graph displays statistically better synchro-
nization.

30

Appendix A

Example λ2 Calculation

Consider the graph:

The numbered labels on the graph correspond to the associated row and column
in our matrices. The Laplacian matrix is equal to the diagonal degree matrix, minus
the adjacency matrix (see section 1.3.1 for details).

L =































2 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2































−































0 1 1 0 0 0 0 0
1 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
0 0 1 0 1 0 0 0
0 1 0 1 0 1 0 0
0 1 0 0 1 0 0 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 1 0































=

=































2 −1 −1 0 0 0 0 0
−1 4 0 0 −1 −1 −1 0
−1 0 3 −1 0 0 0 −1
0 0 −1 2 −1 0 0 0
0 −1 0 −1 3 −1 0 0
0 −1 0 0 −1 2 0 0
0 −1 0 0 0 0 2 −1
0 0 −1 0 0 0 −1 2































Then we compute the eigenvalues of L. In our experiments these were computed
using the Householder algorithm described in [WR71]; however, this can also be

31

accomplished by computing the characteristic polynomial of L, pL(λ), explained in
section 1.2.2. pL(λ) = det(L− λI) = λ8 + 20λ7 + 163λ6 + 698λ5 + 1688λ4 + 2298λ3 +
1629λ2 + 464λ. Solving for the roots pL(λ) = 0 we get

λ(L) = [0, 0.925, 1.30, 1.68, 2.58, 3.76, 4.50, 5.25]. Specifically, λ2 = 0.925.

32

Appendix B

Edge-effects

Edge effects occur in geometric graphs due to constraining the (x, y) coordinates of
each point to a specific shape in the plane. Vertices which are placed in the corners of
the square are unlikely to have adjacent vertices to connect with, and therefore have
lower than expected degree and clustering coefficient. These outlier poorly connected
vertices also decrease λ2. See figures B.1 and B.2.

 0

 0.5

 1

 1.5

 2

 2.5

 5 10 15 20 25 30 35

λ
2

(A
lg

e
b

ra
ic

 c
o

n
n

e
ct

iv
it

y)

Average degree

Geometric random graph on the unit square

N = 100
N = 200
N = 300

Figure B.1: Plot depicting the relationship between average degree and λ2 (algebraic
connectivity) for randomly generated geometric graphs on the unit square. N is the
number of nodes in the network. Each of the 3 sets contains 700 data points.

By constraining vertices to the unit circle instead of the unit square, edge effects
are spread evenly around the entire edge of the circle rather than localized in corners.
Another option is to make the constraint shape much larger than the area where we
will collect data (the sample space). If the constraint shape is larger than the sample

33

space by at least r (the connection radius) then edge effects are essentially removed.
Disadvantages of this approach are that the number of nodes in the sample space is no
longer constant, and simple facts about graphs like the

∑n
i=0 ki always being even are

no longer true, since links exist to nodes outside the sample space. A third alternative
is to instead constrain the vertex placement to a smooth 3-dimensional object like a
sphere. This removes any edge effects, and does not have the problems associated
with the previous option. Unfortunately, it is rarely appropriate to consider complex
discrete systems on a sphere. For example, transportation networks such as power
grids are usually represented by geometric networks on a 2-dimensional map. In
contrast, a sphere might be an appropriate constraint space for global shipping or
international airline networks.

34

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 5 10 15 20 25 30 35

C
lu

st
e

ri
n

g
 c

o
e

�
ci

e
n

t

Average degree

Geometric random graph on the unit square

N = 100
N = 200
N = 300

Figure B.2: Plot depicting the relationship between average degree and clustering
coefficient for randomly generated geometric graphs on the unit square. N is the
number of nodes in the network. Each of the 3 sets contains 700 data points.

35

Appendix C

Code

C.1 clustercoeff.cc

#include "newmat10/newmatio.h"

#include "newmat10/newmatap.h"

float ClusteringCoefficient(SymmetricMatrix A, int node)

{

int N = A.Nrows();

int total = 0;

int sum = 0;

for(int i = 0; i < N; i++)

{

if(!A.element(i,node) || (i == node))

continue;

for(int j = i+1; j < N; j++)

{

if(j == node)

continue;

if(A.element(j,node))

{

++total;

if(A.element(i,j))

++sum;

}

}

}

if(total == 0) return 0;

else return (float)sum/(float)total;

36

}

float ClusteringCoefficient(SymmetricMatrix A)

{

int N = A.Nrows();

float sum = 0.0;

for(int i = 0; i < N; i ++)

sum += ClusteringCoefficient(A,i);

return sum/(float)N;

}

37

C.2 geometric.cc

#include <iostream>

#include "include/rngs.h"

#include "include/rvgs.h"

#include "newmat10/newmatio.h"

#include "newmat10/newmatap.h"

using namespace std;

#define N 200

#define Dist 0.29

extern float ClusteringCoefficient(SymmetricMatrix A);

int main()

{

//Initialize PRG

PlantSeeds(-1);

cout << setprecision(0);

//Initialize adjacency matrix

SymmetricMatrix Adj(N);

SymmetricMatrix L(N);

DiagonalMatrix D(N);

DiagonalMatrix Eigens(N);

double r[N];

double theta[N];

for(int repeat = 0; repeat < 1; repeat++)

{

Adj = 0;

D = 0;

// Geometric Graph

for(int i = 0; i < N; i++)

{

r[i] = Random();

theta[i] = Uniform(0,360);

}

for(int i = 0; i < N; i++)

{

for(int j = i+1; j < N; j++)

{

double distance = sqrt(r[i]*r[i] + r[j]*r[j]

- 2*r[i]*r[j]*cos(theta[i]-theta[j]));

38

if(distance <= Dist)

{

Adj.element(i,j) = 1;

D.element(i,i)++;

D.element(j,j)++;

}

}

}

//Build the Laplacian

L = Adj*-1 + D;

EigenValues(L,Eigens);

if(Eigens(2,2) < 0.000001)

{

repeat--;

continue;

}

cout << "*Node data\n";

cout << "ID\n";

for(int node = 0; node < N; node++)

{

cout << node << endl;

}

cout << "*Node properties\n";

cout << "ID x y\n";

for(int node = 0; node < N; node++)

{

double x = r[node]*cos(theta[node]);

double y = r[node]*sin(theta[node]);

cout << setprecision(6) << node << " "

<< 1000*x << " " << 1000*y << endl;

}

cout << "*Tie data\n";

cout << "from to\n";

for(int row = 0; row < N; row++)

{

for(int col = 0; col < N; col++)

{

if(Adj.element(row,col))

{

cout << setprecision(0)

cout << row << " " << col << endl;

}

39

}

}

}

}

40

C.3 geoshuffle.cc

#include <iostream>

#include "include/rngs.h"

#include "include/rvgs.h"

#include "newmat10/newmatio.h"

#include "newmat10/newmatap.h"

#include <signal.h>

using namespace std;

#define N 600

#define Dist 0.12

extern float ClusteringCoefficient(SymmetricMatrix A);

int s_A;

double lambda_A;

int s_B;

double lambda_B;

SymmetricMatrix A;

SymmetricMatrix B;

void printProgressA(int type)

{

cout << "==========" << endl;

cout << setprecision(5) << "s_A = " << s_A << endl;

cout << "lambda_A = " << lambda_A << endl;

cout << setprecision(0) << A;

}

void printProgressB(int type)

{

cout << "==========" << endl;

cout << setprecision(5) << "s_B = " << s_B << endl;

cout << "lambda_B = " << lambda_B << endl;

cout << setprecision(0) << B;

}

// takes the Laplacian of a graph and calculates

// the scale-free metric

int s(SymmetricMatrix L)

{

int sum = 0;

for(int i = 0; i < N; i++)

{

41

for(int j = 0; j < N; j++)

{

if(L.element(i,j) == -1)

{

sum += (int)(L.element(i,i)*L.element(j,j));

}

}

}

return sum;

}

int a = 0;

int b = 0;

int c = 0;

int d = 0;

int main()

{

//Initialize PRG

PlantSeeds(-1);

SelectStream(0);

cout << setprecision(0);

signal(SIGUSR1, printProgressA);

signal(SIGUSR2, printProgressB);

//Initialize adjacency matrix

SymmetricMatrix Adj(N);

SymmetricMatrix L(N);

DiagonalMatrix D(N);

DiagonalMatrix Eigens(N);

/*

//Read from input

while(!cin.eof())

{

int i, j;

cin >> i >> j;

Adj.element(i,j) = 1;

D.element(i,i) += 1;

D.element(j,j) += 1;

}

*/

Eigens = 0;

42

while(Eigens(2,2) < 0.000001) //rounding errors

{

Adj = 0;

D = 0;

double r[N];

double theta[N];

A = 0; B = 0;

s_A = 0; s_B = 0;

lambda_A = 10; lambda_B = 0;

// Geometric Graph

for(int i = 0; i < N; i++)

{

r[i] = Random();

theta[i] = Uniform(0,360);

}

for(int i = 0; i < N; i++)

{

for(int j = i+1; j < N; j++)

{

double distance = sqrt(r[i]*r[i] + r[j]*r[j]

- 2*r[i]*r[j]*cos(theta[i]-theta[j]));

if(distance <= Dist)

{

Adj.element(i,j) = 1;

D.element(i,i)++;

D.element(j,j)++;

}

}

}

//Reconnect stage for isolated nodes.

for(int i = 0; i < N; i++)

{

double backupDist = Dist;

while(D.element(i,i) == 0)

{

for(int j = 0; j < N; j++)

{

if(i==j)

continue;

double distance = sqrt(r[i]*r[i] + r[j]*r[j]

- 2*r[i]*r[j]*cos(theta[i]-theta[j]));

43

if(distance <= backupDist)

{

Adj.element(i,j) = 1;

D.element(i,i)++;

D.element(j,j)++;

cerr << setprecision(3)

cerr << "backupDist = " << backupDis

t << endl;

}

}

backupDist += 0.01;

}

}

//Build the Laplacian

L = Adj*-1 + D;

EigenValues(L,Eigens); // Calculate eigenvalues

}

cerr << "Initial condition satisfied.\n";

SelectStream(2);

while(1)

{

//SHUFFLE

do{

a = Equilikely(1,N);

b = Equilikely(1,N);

} while ((a == b) || (L(a,b) == 0));

do{

c = Equilikely(1,N);

d = Equilikely(1,N);

} while ((c == d) || (L(c,d) == 0));

if((a==c)||(a==d)||(b==c)||(b==d))

continue;

if(L(a,d) || L(b,c))

continue;

L(a,b) = 0; L(c,d) = 0;

L(a,d) = -1; L(b,c) = -1;

//END SHUFFLE

44

EigenValues(L,Eigens);

/*

if(Eigens(2,2) < 0.0000001)

{

//UNSHUFFLE

cerr << "Unshuffling...\n";

if(a==0)

cerr << "unshuffle ERROR.\n";

L(a,d) = 0; L(b,c) = 0;

L(a,b) = -1; L(c,d) = -1;

a=0;b=0;c=0;d=0;

//UNSHUFFLE

continue;

}

*/

if((Eigens(2,2) < lambda_A)&&(Eigens(2,2) > 0.0001))

{

A = D-L;

s_A = s(L);

lambda_A = Eigens(2,2);

}

if(Eigens(2,2) > lambda_B)

{

B = D-L;

s_B = s(L);

lambda_B = Eigens(2,2);

}

}

}

45

C.4 poisson.cc

#include <iostream>

#include "include/rngs.h"

#include "include/rvgs.h"

#include "newmat10/newmatio.h"

#include "newmat10/newmatap.h"

using namespace std;

#define N 500

#define p (5.0/(float)N)

int main()

{

//Initialize PRG

PlantSeeds(-1);

cout << setprecision(0);

//Initialize adjacency matrix

SymmetricMatrix Adj(N);

SymmetricMatrix L(N);

DiagonalMatrix D(N);

DiagonalMatrix Eigens(N);

for(int repeat = 0; repeat < 200; repeat++)

{

Adj = 0;

D = 0;

//Random ER (Poisson) Graph

for(int i = 0; i < N; i++)

{

for(int j = i+1; j < N; j++)

{

if(Random() < p)

{

Adj.element(i,j) = 1;

D.element(i,i)++;

D.element(j,j)++;

}

}

}

//Build the Laplacian

L = Adj*-1 + D;

46

EigenValues(L,Eigens);

if(Eigens(2,2) < 0.000001)

{

repeat--;

continue;

}

//cout << "Algebraic Connectivity: ";

cout << setprecision(6) << Eigens(2,2) << endl;

}

}

47

C.5 prefattach.cc

#include <iostream>

#include "include/rngs.h"

#include "include/rvgs.h"

#include "newmat10/newmatio.h"

#include "newmat10/newmatap.h"

using namespace std;

#define N 300

#define k 6

extern float ClusteringCoefficient(SymmetricMatrix A);

int main()

{

//Initialize PRG

PlantSeeds(-1);

cout << setprecision(0);

//Initialize adjacency matrix

SymmetricMatrix Adj(N);

SymmetricMatrix L(N);

DiagonalMatrix D(N);

DiagonalMatrix Eigens(N);

cout << "\n\n# N=" << N << " k=" << k << endl;

for(int repeat = 0; repeat < 200; repeat++)

{

Adj = 0;

D = 0;

int degree = 0;

//Create starting complete graph

for(int i = 0; i < k; i++)

{

for(int j = i+1; j < k; j++)

{

Adj.element(i,j) = 1;

D.element(i,i)++;

D.element(j,j)++;

degree += 2;

}

}

//Preferential attachment

48

for(int i = k; i < N; i++) //For all the remaining nodes

{

int numlinks = Equilikely(1,k);

for(int j = 0; j < numlinks; j++) //make links k times

{

int link = Equilikely(1,degree);

int node = 0;

for(node = 0; link > 0; node++)

link -= (int)D.element(node,node);

node--;

if(Adj.element(i,node))

{

--j;

continue;

}

else

{

Adj.element(i,node) = 1;

D.element(i,i)++;

D.element(node,node)++;

degree += 2;

}

}

}

//Build the Laplacian

L = Adj*-1 + D;

EigenValues(L,Eigens); // Calculate eigenvalues

cout << setprecision(6) << D.Sum()/N << " "

<< Eigens(2,2) << " " << ClusteringCoefficient(Adj) << endl;

}

}

49

C.6 Makefile

prefattach: prefattach.cc cdh ddh

g++ -g -Wall clustercoeff.cc prefattach.cc include/rngs.c

include/rvgs.c -o prefattach -L./newmat10 -lnewmat -lm

poisson: poisson.cc cdh ddh

g++ -g -Wall poisson.cc include/rngs.c -o poisson -L./newmat10

-lnewmat -lm

geometric: geometric.cc

g++ -g -Wall clustercoeff.cc geometric.cc include/rngs.c

include/rvgs.c -o geometric -L./newmat10 -lnewmat -lm

geoshuffle: geoshuffle.cc clustercoeff.cc

g++ -Wall -O2 geoshuffle.cc include/rngs.c include/rvgs.c

clustercoeff.cc -o geoshuffle -L./newmat10 -lnewmat -lm

50

Bibliography

[ABJ04] Fatihcan M. Atay, Tuerker Biyikoglu, and Juergen Jost. Synchronization
of networks with prescribed degree distributions, May 29 2004. Com-
ment: v2: A new theorem and a numerical example added. To appear in
IEEE Trans. Circuits and Systems I: Fundamental Theory and Applica-
tions.

[BA99] Albert-Laszlo Barabasi and Reka Albert. Emergence of scaling in random
networks. Science, 286(5439):509–512, October 1999.

[Ber73] C. Berge. Graphs and Hypergraphs. North Holland, 1973.

[CHK+01] D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman, and
S. H. Strogatz. Are randomly grown graphs really random? Phys. Rev.
E, 64:041902, 2001.

[CLR01] George Casella, Michael Lavine, and Christian P. Robert. General —
explaining the perfect sampler. The American Statistician, 55(4):299–
305, 2001.

[CNSW00] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Net-
work robustness and fragility: Percolation on random graphs, October 19
2000. Comment: 4 pages, 2 figures.

[DHM04] Dasgupta, Hopcroft, and McSherry. Spectral analysis of random graphs
with skewed degree distributions. In FOCS: IEEE Symposium on Foun-
dations of Computer Science (FOCS), 2004.

[Dim00] Xeni K. Dimakos. A guide to exact simulation, January 11 2000.

[ER59] Paul Erdos and A. Renyi. On random graphs I. Publicationes Mathe-
maticae, 6:290–297, 1959.

[Fie73] M. Fiedler. Algebraic connectivity of graphs. cmj, 23:298–305, 1973.

[GMZ03] Christos Gkantsidis, Milena Mihail, and Ellen W. Zegura. The markov
chain simulation method for generating connected power law random
graphs. In ALENEX, pages 16–25, 2003.

51

[Hak62] S. L. Hakimi. On realizability of a set of integers as degrees of the
vertices of a linear graph. I. Journal of the Society for Industrial and
Applied Mathematics, 10(3):496–506, September 1962.

[Hak63] S. L. Hakimi. On realizability of a set of integers as degrees of the vertices
of a linear graph II. uniqueness. Journal of the Society for Industrial and
Applied Mathematics, 11(1):135–147, March 1963.

[HJ85] Roger A. Horn and Charles A. Johnson. Matrix Analysis. Cambridge
University press, Cambridge, 1985.

[IA05] Shalev Itzkovitz and Uri Alon. Subgraphs and network motifs in geo-
metric networks. Physical Review E, 71:026117, 2005.

[JJ01] J. Jost and M. P. Joy. Spectral properties and synchronization in coupled
map lattices, October 19 2001. Comment: 10 pages with 15 figures
(Postscript), REVTEX format. To appear in PRE.

[KPV04] E. K. Kosmidis, O. Pierrefiche, and J. F. Vibert. Respiratory-like rhyth-
mic activity can be produced by an excitatory network of non-pacemaker
neuron models. Journal of Neurophysiology, 92:686–699, 2004.

[LAT+05] Lun Li, David Alderson, Reiko Tanaka, John C. Doyle, and Walter Will-
inger. Towards a theory of scale-free graphs: Definition, properties, and
implications (extended version), October 18 2005. Comment: 44 pages,
16 figures. The primary version is to appear in Internet Mathematics
(2005).

[Lay94] D. C. Lay. Linear Algebra and Its Applications. Addison–Wesley, Read-
ing, MA, 1994.

[LS81] L. Lovasz and Vera T. Sos, editors. Algebraic Methods in Graph Theory,
volume 1. North-Holland, 1981.

[Mer98] Russell Merris. Laplacian graph eigenvectors. j-LINEAR-ALGEBRA-
APPL, 278(1–3):221–236, July 1998.

[Moh97] Bojan Mohar. Some applications of laplace eigenvalues of graphs, July 28
1997.

[MSed] Christopher Mayer and Todd Sinai. Network effects, congestion exter-
nalities, and air traffic delays: Or why all delays are not evil. Zell/Lurie
Center Working Papers 393, Wharton School Samuel Zell and Robert
Lurie Real Estate Center, University of Pennsylvania, undated. avail-
able at http://ideas.repec.org/p/wop/pennzl/393.html.

[New03] Newman. The structure and function of complex networks. SIREV:
SIAM Review, 45, 2003.

52

[Pen03] M. Penrose. Random Geometric Graphs. Oxford University Press, Ox-
ford, 2003.

[RCbAH02] Alejandro F Rozenfeld, Reuven Cohen, Daniel ben Avraham, and
Shlomo Havlin. Scale-free networks on lattices. Physical Review Let-
ters, 89:218701, 2002.

[TGJ+02] Hongsuda Tangmunarunkit, Ramesh Govindan, Sugih Jamin, Scott
Shenker, and Walter Willinger. Network topology generators: degree-
based vs. structural. In SIGCOMM ’02: Proceedings of the 2002 confer-
ence on Applications, technologies, architectures, and protocols for com-
puter communications, pages 147–159, New York, NY, USA, 2002. ACM
Press.

[VL05] Fabien Viger and Matthieu Latapy. Fast generation of random connected
graphs with prescribed degrees, February 22 2005.

[WADL04] Walter Willinger, David Alderson, John C. Doyle, and Lun Li. More
”normal” than normal: Scaling distributions and complex systems. In
Winter Simulation Conference, pages 130–141, 2004.

[WR71] J. H. Wilkinson and C. Reinsch, editors. Linear Algebra, volume II of
Handbook for Automatic Computation. Springer-Verlag, Berlin, 1971.

[WS98] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’
networks. Nature, 393:440–442, 1998.

53

